Skip to main content

Efficient and Automatic Subspace Relevance Determination via Multiple Kernel Learning for High-Dimensional Neuroimaging Data

  • Conference paper
  • First Online:
Brain Informatics (BI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11309))

Included in the following conference series:

  • 1096 Accesses

Abstract

Alzheimer’s disease is a major cause of dementia. Its pathology induces complex spatial patterns of brain atrophy that evolve as the disease progresses. The diagnosis requires accurate biomarkers that are sensitive to disease stages. Probabilistic biomarkers naturally support the interpretation of decisions and evaluation of uncertainty associated with them. We obtain probabilistic biomarkers via Gaussian Processes, which also offer flexible means to accomplish Multiple Kernel Learning. Exploiting this flexibility, we propose a novel solution, Multiple Kernel Learning for Automatic Subspace Relevance Determination, to tackle the challenges of working with high-dimensional neuroimaging data. The proposed Gaussian Process models are competitive with or better than the well-known Support Vector Machine in terms of classification performance even in the cases of single kernel learning. Also, our method improves the capability of the Gaussian Process models and their interpretability in terms of the known anatomical correlates of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner, J., et al.: SPM8 Manual, July 2010

    Google Scholar 

  2. Association, A., et al.: 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 14(3), 367–429 (2018)

    Article  Google Scholar 

  3. Ayhan, M.S., Benton, R.G., Choubey, S., Raghavan, V.V.: Utilization of domain-knowledge for simplicity and comprehensibility in predictive modeling of Alzheimer’s disease. In: Proceedings of the 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), BIBMW 2012, pp. 265–272 (2012)

    Google Scholar 

  4. Ayhan, M.S., Benton, R.G., Raghavan, V.V., Choubey, S.: Composite kernels for automatic relevance determination in computerized diagnosis of Alzheimer’s disease. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) BHI 2013. LNCS (LNAI), vol. 8211, pp. 126–137. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02753-1_13

    Chapter  Google Scholar 

  5. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML 2004, pp. 6–13 (2004)

    Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

    Article  Google Scholar 

  7. Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39(4), 1731–1743 (2008). https://doi.org/10.1016/j.neuroimage.2007.10.031

    Article  Google Scholar 

  8. Gupta, A., Ayhan, M.S., Maida, A.S.: Natural image bases to represent neuroimaging data. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), ICML 2013, June 2013

    Google Scholar 

  9. Hinrichs, C., Singh, V., Peng, J., Johnson, S.C.: Q-MKL:Matrix-induced regularization in multi-kernel learning withapplications to neuroimaging. In: NIPS, pp. 1430–1438 (2012)

    Google Scholar 

  10. Imabayashi, E., et al.: Superiority of 3-dimensional stereotactic surface projection analysis over visual inspection in discrimination of patients with very early Alzheimer’s disease from controls using brain perfusion SPECT. J. Nucl. Med. 45(9), 1450–1457 (2004)

    Google Scholar 

  11. Klöppel, S., Stonnington, C.M., Barnes, J., Chen, F., Chu, C., Good, C.D., Mader, I., Mitchell, L.A., Patel, A.C., Roberts, C.C., et al.: Accuracy of dementia diagnosis-a direct comparison between radiologists and a computerized method. Brain 131(11), 2969–2974 (2008)

    Article  Google Scholar 

  12. MacKay, D.J.C.: Bayesian methods for backpropagation networks. In: Domany, E., van Hemmen, J.L., Schulten, K. (eds.) Models of Neural Networks III. Physics of Neural Networks, pp. 211–254. Springer, New York (1996)

    Chapter  Google Scholar 

  13. Matsuda, H.: Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion spect. J. Nucl. Med. 48(8), 1289–1300 (2007)

    Article  Google Scholar 

  14. Minoshima, S., Frey, K.A., Koeppe, R.A., Foster, N.L., Kuhl, D.E.: A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J. Nucl. Med. 36(7), 1238–1248 (1995)

    Google Scholar 

  15. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0745-0

    Book  MATH  Google Scholar 

  16. Nickisch, H., Rasmussen, C.E.: Approximations for binary Gaussian process classification. J. Mach. Learn. Res. 9, 2035–2078 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Petersen, R.C.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985 (2001)

    Article  Google Scholar 

  18. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classifiers 10(3), 61–74 (1999)

    Google Scholar 

  19. Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 9999, 3011–3015 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2005)

    Google Scholar 

  21. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  22. Thatcher, R.W.: Functional Neuroimaging: Technical Foundations. Academic Press, San Diego (1994)

    Google Scholar 

  23. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  24. Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C., Jack, C.R.: 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130(7), 1777–1786 (2007)

    Article  Google Scholar 

  25. Williams, C.K.I., Barber, D.: Bayesian classification with Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1342–1351 (1998)

    Article  Google Scholar 

  26. Wipf, D.P., Nagarajan, S.S.: A new view of automatic relevance determination. In: Advances in Neural Information Processing Systems, pp. 1625–1632 (2007)

    Google Scholar 

  27. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Data used in this study are from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For up-to-date information, see www.adni-info.org or adni.loni.usc.edu.

Majority of this work was completed at the Center for Advanced Computer Studies, University of Louisiana at Lafayette, where M.S.A completed his graduate studies under the supervision of V.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Seçkin Ayhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayhan, M.S., Raghavan, V. (2018). Efficient and Automatic Subspace Relevance Determination via Multiple Kernel Learning for High-Dimensional Neuroimaging Data. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05587-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05586-8

  • Online ISBN: 978-3-030-05587-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics