Skip to main content

Synthesis, Characterization, and Applications of Hemicelluloses Based Eco-friendly Polymer Composites

  • Chapter
  • First Online:

Abstract

Hemicelluloses are widely available natural polysaccharides that present abundant functional groups (hydroxyl, carboxyl, and acetyl groups) on their backbones to act as an ideal candidate for chemical/physical functionalization. This review summarizes the synthesis and characterization of hemicelluloses-based polymer composites including products from different modifications (zero-dimensional), particles (zero-dimensional), films (two-dimensional), and gels (three-dimensional), aiming at improving the functional properties of hemicelluloses-based materials such as mechanical strength, water vapor permeability, oxygen permeability and more hydrophobicity. The hemicelluloses-based products are more preferable for specific use in heavy metal removal, dye adsorption, drug delivery and release, tissue engineering, biodegradable packaging and so forth. The perspectives of hemicelluloses in future composites and applications are also outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

EVOH:

Ethylene vinyl alcohol

PVDC:

Polyvinylidene chloride

3D:

Three-dimensional

AGU:

Anhydroglucose units

AcGGM/GGM:

O-acetyl galactoglucomannans

DMF:

N, N-dimethylformamide

DMA/LiCl:

N, N-dimethylacetamide/lithium chloride

DMSO/THF:

Dimethyl sulfoxide/tetrahydrofuran

DMAP:

4-dimethylamino pyridine

NBS:

N-bromosuccinimide

TEA:

Triethylamine

DS:

Degree of substitution

MSA:

Methane sulfonic acid

[BMIM]Cl:

1-butyl-3-methylimidazolium chloride

IL:

Ionic liquid

LC:

Lauroyl chloride

LH:

Lauroylated hemicelluloses

HFIP:

HEXAFLUOROISOPROPANOL/1, 1, 1, 3, 3, 3-hexafluoro-2-propanol

CDI:

N, N’-carbonyldiimidazole

SET-LRP:

Single-electron-transfer mediated living radical polymerization

AcGGM-SH:

Thiolated O-acetyl galactoglucomannan

PEG-MA:

Polyethylene glycol monomethacrylate

ETA:

2, 3-epoxypropyltrimethylammonium chloride

QH:

Quaternized hemicelluloses

MMT:

Montmorillonite

NaH:

Sodium hydride

BnGGM:

Benzyl galactoglucomannan

TBAI:

Tetrabutylammonium iodide

CHMAC:

3-chloro-2-hydroxypropyltrimethylammonium chloride

GTMAC:

Glycidyltrimethylammonium chloride

METAC:

[2-(methacryloyloxy) ethyl] trimethylammonium chloride

HPMA:

2-hydroxypropyltrimethylammonium

DME:

2-hydroxypropyltrimethylammonium (HPMA), 1, 2-dimethoxyethane

PHL:

Pre-hydrolysis liquor

GTMAC:

Glycidyltrimethylammonium chloride

METAC:

[2-(methacryloyloxy) ethyl] trimethylammonium chloride

MeGlcp-Xylan:

O-acetyl-4-O-methylglucuronoxylan

WH:

Wood hydrolysate

AG:

Arabinogalactan

EDC/NHS:

N-ethyl-N’-(3-dimethylamino)propyl carbodiimide hydroxide/N-hydroxysuccinimide

TA:

Tyramine

HRP:

260 purpurogallin unit/mg solid

DMT-MM:

4-(4, 6-dimethoxy-1, 3, 5-triazin-2-yl)-4-methylmorpholinium chloride

CuAAC:

Copper(I)-catalyzed azide-alkyne cycloaddition

AX:

Arabinoxylan

AGX:

Arabinoglucuronoxylan

[emim][Me2PO4]:

1-ethyl-3-methylimidazolium dimethyl phosphate

[DBNH][OAc]:

1, 5-diazabicyclo[4.3.0]non-5-enium acetate

[Amim]+Cl:

1-allyl-3-methylimidazolium chloride

XylC6N3:

Di-O-(6-azidohexanoyl)-xylan

PLLA:

Poly(L-lactide)

PMDETA:

N, N, N’, N’, N’’-pentamethyldiethylenetriamine

LLA:

L-lactide

TBD:

Triazabicyclodecene

PLA:

Polylactide

AN:

Acrylonitrile

MA:

Methyl acrylate

AM:

Acrylamide/acrylic amide

DMC:

Methacryloyloxy ethyl trimethyl ammonium chloride

APMP:

Alkaline peroxide mechanical pulping

MMA:

Methyl methacrylate

NIPAM:

N-isopropyl acrylamide

GMA:

Glycidyl methacrylate

GM:

Galactomannan

QCM-D:

Galactomannan (GM), Quartz crystal microbalance with dissipation

TEMPO:

2, 2, 6, 6-tetramethylpiperidine-1-oxyl

Cy:

Cysteine

LOD:

Limit of detection

AgNPs:

Silver nanoparticles

PMP:

Polymeric magnetic microparticles

MP:

Magnetic microparticles

CMH:

Carboxymethyl functionalized hemicellulose/carboxymethyl hemicellulose

Pd NPs:

Palladium nanoparticles

XH:

Xylan-type hemicelluloses

CKGM:

Carboxymethyl Konjac glucomannan

CS:

Chitosan

BSA:

Bovine serum albumin

WVP:

Water vapor permeability

OP:

Oxygen permeability

PVA:

Polyvinyl alcohol

HPKO:

Hydrogenated palm kernel oil

HLBs:

Hydrophilic-lipophilic balances

LDPE:

Low-density polyethylene

DMA:

Dynamic mechanical analysis

NCH:

Chitin nanowhiskers

BH:

Bleached hemicelluloses

BAH:

Acetylated bleached hemicelluloses

NCC:

Nanocrystalline cellulose

CNCC:

Cationically modified NCC

HC/SB:

Hemicelluloses/sorbitol

GTMAC:

Glycidyltrimethylammonium chloride

HL:

Hemicellulose/lignin

NFC:

Nanofibrillated cellulose

MFC:

Microfibrillated cellulose

CNFs:

Cellulose nanofibers

CNT:

Carbon nanotube

κ-car/LBG:

Κ-carrageenan/locust bean

GA:

Gum arabic

SA:

Stearyl acrylate

SM:

Stearyl methacrylate

EB:

Electron beam

PLGA:

Poly(lactic-co-glycolic acid)

TFAA:

Trifluoroacetic anhydride

PET:

Polyethylene terephthalate

CHPS:

3-Chloro-2-hydroxypropyl sulfonic acid

SCHMAC:

(S)-(-)-(3-chloro-2-hydroxypropyl)-trimethylammonium chloride

CHPMAC:

3-chloro-2-hydroxypropyl-trimethylammonium chloride

Ra:

Roughness value

Seq:

Equilibrium swelling ratio

HEMA:

2-hydroxyethyl methacrylate

HEMA-Im:

2-[(1- imidazolyl)formyloxy]ethyl methacrylate

AnMan5A:

Enzyme β-mannanase

M-AcGGM:

Methacrylated AcGGM

CM-AcGGM:

Maleic anhydride-modified M-AcGGM

AA:

Acrylic acid

CA:

Citric acid

SHP:

Sodium hypophosphite

NIPAAm:

N-isopropylacrylamide

MBA:

N, N’-methylenebis-acrylamide

DMAP/NMP:

2, 2-dimethoxy-2-phenylacetophenone/N-methyl pyrrolidone

ACX:

Acylated xylan

Hce-MA/AHC:

Acylated hemicellulose

LCST:

Lower critical solution temperature

APS/TEMDA:

Ammonium persulfate/N, N, N′, N′-tetramethyl-ethane-1, 2-diamine

MeDMA:

[2-(methacryloyloxy) ethyl] trimethylammonium chloride

ECH:

Epichlorohydrin

GDEP:

Glow discharge electrolysis plasma

MFRHH:

Magnetic field-responsive hemicelluloses-based hydrogel

SRs:

Swelling ratios

ECH:

Electrically conductive hydrogels

ECHH:

Electrically conductive hemicellulose hydrogel

AP:

Aniline pentamer

C-AcGGM:

Carboxylated AcGGM

AT:

Aniline tetramer

SRHMGs:

Stimuli-responsive hemicellulose microgels

CMCH:

Carboxymethyl chitosan-hemicellulose

CHNT:

Carboxymethyl chitosan-hemicellulose network

SDS:

Sodium dodecyl sulfate

DTPA:

Diethylene triamine pentaacetic acid

DHC:

Dialdehyde hemicelluloses

CNF:

Cellulose nanofibrils

CNC:

Nanocrystalline cellulose

NFC:

Nanofibrillated cellulose

IPNs:

Interpenetrating polymer networks

MA-CMC:

Methacrylated carboxymethylcellulose

SWH:

Softwood hemicellulose hydrolysate

kC-xylan-PVP:

Kappa-carrageenan/xylan/polyvinylpyrrolidone

KPS:

Sodium persulphate

PEG-PPG-PEG:

Poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)

IA:

Itaconic acid

PAA:

Poly(amidoamine)

GO:

Graphene oxide

PAM:

Polymerized acrylamide

MW-CNTs:

Multiwall carbon nanotube

MB:

Methylene blue

PEGDE:

Polyethylene glycol diglycidyl ether

References

  1. Thakur V KT, hakur M K (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109(13): 102–117

    Google Scholar 

  2. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834

    Article  CAS  Google Scholar 

  3. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. Acs Sustainable Chemistry & Engineering 2(5):1072–1092

    Article  CAS  Google Scholar 

  4. Mikkonen KS (2013) Recent Studies on Hemicellulose-Based Blends. Composites and Nanocomposites. Springer, Berlin Heidelberg, pp 313–336

    Google Scholar 

  5. Hansen NM, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505

    Article  CAS  Google Scholar 

  6. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59(4):46

    Article  CAS  Google Scholar 

  7. Thakur V KThakur M K (2014) Recent Advances in Graft Copolymerization and Applications of Chitosan: A Review. Acs Sustainable Chemistry & Engineering, 2(12)

    Google Scholar 

  8. Rahmat AR, Wan AWAR, Sin LT, Yussuf AA (2009) Approaches to improve compatibility of starch filled polymer system: A review. Mater Sci Eng, C 29(8):2370–2377

    Article  CAS  Google Scholar 

  9. Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuels, Bioprod Biorefin 3(3):329–343

    Article  CAS  Google Scholar 

  10. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82(22):1–15

    Article  CAS  Google Scholar 

  11. Farhat W, Venditti RA, Hubbe M et al (2017) A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. Chemsuschem 10(2):305–323

    Article  CAS  Google Scholar 

  12. Ibn Yaich A, Edlund UAlbertsson A C (2017) Transfer of Biomatrix/Wood Cell Interactions to Hemicellulose-Based Materials to Control Water Interaction. Chemical Review, 117(12): 8177–8207

    Google Scholar 

  13. Thakur VK, Thakur MK (2015) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, Springer, India

    Book  Google Scholar 

  14. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed Engl 54(11):3210–3215

    Article  CAS  Google Scholar 

  15. Ayoub A, Venditti RA, Pawlak JJ, Salam A, Hubbe MA (2013) Novel Hemicellulose-Chitosan Biosorbent for Water Desalination and Heavy Metal Removal. ACS Sustainable Chemistry & Engineering 1(9):1102–1109

    Article  CAS  Google Scholar 

  16. Dax D, Chavez MS, Xu C et al (2014) Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydrate Polymer 111:797–805

    Article  CAS  Google Scholar 

  17. Ferrari E, Ranucci E, Edlund U, Albertsson AC (2015) Design of renewable poly(amidoamine)/hemicellulose hydrogels for heavy metal adsorption. J Appl Polym Sci 132(12):41695

    Google Scholar 

  18. Peng XW, Zhong LX, Ren JL, Sun RC (2012) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60(15):3909–3916

    Article  CAS  Google Scholar 

  19. Wu S, Kan J, Dai X et al (2017) Ternary carboxymethyl chitosan-hemicellulose-nanosized TiO2 composite as effective adsorbent for removal of heavy metal contaminants from water. Fibers and Polymers 18(1):22–32

    Article  CAS  Google Scholar 

  20. Wu SP, Dai XZ, Kan JR, Shilong FD, Zhu MY (2017) Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin Chem Lett 28(3):625–632

    Article  CAS  Google Scholar 

  21. Sun XF, Gan Z, Jing Z et al (2015) Adsorption of Methylene Blue on Hemicellulose-Based Stimuli-Responsive Porous Hydrogel. J Appl Polym Sci 132(10):41606

    Article  Google Scholar 

  22. Cheng HL, Feng QH, Liao CA et al (2016) Removal of methylene blue with hemicellulose/clay hybrid hydrogels. Chin J Polym Sci 34(6):709–719

    Article  CAS  Google Scholar 

  23. Farhat W, Venditti R, Mignard N et al (2017) Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process. Int J Biol Macromol 104:564–575

    Article  CAS  Google Scholar 

  24. Gao C, Ren J, Zhao C et al (2016) Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr Polymer 151:189–197

    Article  CAS  Google Scholar 

  25. Sun XF, Wang HH, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polymer 92(2):1357–1366

    Article  CAS  Google Scholar 

  26. Zhao W, Odelius K, Edlund U, Zhao CAlbertsson A C (2015) In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery. Biomacromolecules, 16(8): 2522–8

    Google Scholar 

  27. Chen GG, Qi XM, Guan Y et al (2016) High Strength Hemicellulose-Based Nanocomposite Film for Food Packaging Applications. ACS Sustainable Chemistry & Engineering 4(4):1985–1993

    Article  CAS  Google Scholar 

  28. Laine C, Harlin A, Hartman J et al (2013) Hydroxyalkylated xylans – Their synthesis and application in coatings for packaging and paper. Ind Crops Prod 44:692–704

    Article  CAS  Google Scholar 

  29. Tatar F, Tunç MT, Dervisoglu M, Cekmecelioglu D, Kahyaoglu T (2014) Evaluation of hemicellulose as a coating material with gum arabic for food microencapsulation. Food Res Int 57:168–175

    Article  CAS  Google Scholar 

  30. Shen J, Fatehi PNi Y (2014) Biopolymers for surface engineering of paper-based products. Cellulose, 21(5): 3145–3160

    Google Scholar 

  31. Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86(1–9):561–576

    Article  Google Scholar 

  32. Egüés I, Sanchez C, Mondragon I, Labidi J (2012) Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Biores Technol 103(1):239–248

    Article  CAS  Google Scholar 

  33. Isao Hasegawa, Kazuhide Tabata, Osamu Okuma, AKazuhiro Mae (2004) New pretreatment methods combining a hot water treatment and water/acetone extraction for thermo-chemical conversion of biomass. Energy & Fuels An American Chemical Society Journal, 18(3): 755–760

    Google Scholar 

  34. And MP, Zacchi G (2003) Extraction of Hemicellulosic Oligosaccharides from Spruce Using Microwave Oven or Steam Treatment. Biomacromol 4(3):617

    Article  CAS  Google Scholar 

  35. Froschauer C, Hummel M, Iakovlev M et al (2013) Separation of Hemicellulose and Cellulose from Wood Pulp by Means of Ionic Liquid/Cosolvent Systems. Biomacromol 14(6):1741–1750

    Article  CAS  Google Scholar 

  36. Mesbah M, Shahsavari S, Soroush E, Rahaei N, Rezakazemi M (2018) Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. Journal of CO2 Utilization, 25: 99–107

    Google Scholar 

  37. Razavi SMR, Rezakazemi M, Albadarin AB, Shirazian S (2016) Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chem Eng Process 108:27–34

    Article  CAS  Google Scholar 

  38. Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26(1):46–52

    Article  CAS  Google Scholar 

  39. Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Biores Technol 64(2):139–151

    Article  CAS  Google Scholar 

  40. Li H, Qu Y, Yang Y, Chang S, Xu J (2016) Microwave irradiation–A green and efficient way to pretreat biomass. Biores Technol 199:34–41

    Article  CAS  Google Scholar 

  41. Chum H L, Johnson D K, Black S et al (1988) Organosolv pretreatment for enzymatic hydrolysis of poplars: I. Enzyme hydrolysis of cellulosic residues. Biotechnology & Bioengineering, 31(7): 643–649

    Google Scholar 

  42. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  CAS  Google Scholar 

  43. Hu L, Du M, Zhang J (2018) Hemicellulose-Based Hydrogels Present Status and Application Prospects: A Brief Review. Open Journal of Forestry 08(01):15–28

    Article  Google Scholar 

  44. Uraki Y, Koda K (2015) Utilization of wood cell wall components. Journal of Wood Science 61(5):447–454

    Article  CAS  Google Scholar 

  45. Gandini A (2011) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13(5):1061

    Article  CAS  Google Scholar 

  46. Cunha A G, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose, 17(6): 1045–1065

    Google Scholar 

  47. Thomas S, Visakh P M, Mathew A P (2013) Advances in Natural Polymers. Advanced Structured Materials. Vol. 18. springer. p 216–217

    Google Scholar 

  48. Belmokaddem FZ, Pinel C, Huber P, Petit Conil M, Perez Dda S (2011) Green synthesis of xylan hemicellulose esters. Carbohyd Res 346(18):2896–2904

    Article  CAS  Google Scholar 

  49. Peng XW, Ren JL, Sun RC (2010) Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromol 11(12):3519–3524

    Article  CAS  Google Scholar 

  50. Zhang LM, Yuan TQ, Xu F, Sun RC (2013) Enhanced hydrophobicity and thermal stability of hemicelluloses by butyrylation in [BMIM]Cl ionic liquid. Ind Crops Prod 45:52–57

    Article  CAS  Google Scholar 

  51. Sun RC, Fang JM, Tomkinson J (2000) Stearoylation of hemicelluloses from wheat straw. Polym Degrad Stab 67(2):345–353

    Article  CAS  Google Scholar 

  52. Sun XF, Sun RC, Sun JX (2004) Oleoylation of sugarcane bagasse hemicelluloses usingN-bromosuccinimide as a catalyst. J Sci Food Agric 84(8):800–810

    Article  CAS  Google Scholar 

  53. Wang HT, Yuan TQ, Meng LJ et al (2012) Structural and thermal characterization of lauroylated hemicelluloses synthesized in an ionic liquid. Polym Degrad Stab 97(11):2323–2330

    Article  CAS  Google Scholar 

  54. Sun R, Fanga JM, Tomkinson J, Hill CAS (1999) Esterification of hemicelluloses from poplar chips in homogenous solution of N, N-dimethylformamide/lithium chloride. J Wood Chem Technol 19(4):287–306

    Article  CAS  Google Scholar 

  55. Sun RC, Fang JM, Tomkinson J, Geng ZC, Liu JC (2011) Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Paper Chemicals 44(1):29–39

    Google Scholar 

  56. Fundador N G V, Enomoto-Rogers Y, Takemura AIwata T (2012) Syntheses and characterization of xylan esters. Polymer 53(18):3885–3893

    Article  CAS  Google Scholar 

  57. Daus S, Heinze T (2010) Xylan-based nanoparticles: prodrugs for ibuprofen release. Macromol Biosci 10(2):211–220

    Article  CAS  Google Scholar 

  58. Kisonen V, Xu C, Bollström R et al (2014) O-acetyl galactoglucomannan esters for barrier coatings. Cellulose 21(6):4497–4509

    Article  CAS  Google Scholar 

  59. Buchanan CM, Buchanan NL, Debenham JS et al (2003) Preparation and characterization of arabinoxylan esters and arabinoxylan ester/cellulose ester polymer blends. Carbohyd Polym 52(4):345–357

    Article  CAS  Google Scholar 

  60. Voepel J, Edlund U, Albertsson A C, Percec V (2011) Hemicellulose-based multifunctional macroinitiator for single-electron-transfer mediated living radical polymerization. biomacromolecules, 12(1): 253–9

    Google Scholar 

  61. Wrigstedt P, Kylli P, Pitkanen L et al (2010) Synthesis and antioxidant activity of hydroxycinnamic acid xylan esters. J Agric Food Chem 58(11):6937–6943

    Article  CAS  Google Scholar 

  62. Maleki L, Edlund U, Albertsson AC (2015) Thiolated hemicellulose as a versatile platform for one-pot click-type hydrogel synthesis. Biomacromol 16(2):667–674

    Article  CAS  Google Scholar 

  63. Ren JL, Peng F, Sun RC (2008) Preparation of Hemicellulosic Derivatives with Bifunctional Groups in Different Media. J Agric Food Chem 56(23):11209–11216

    Article  CAS  Google Scholar 

  64. Peng X, Ren JSun R (2011) An efficient method for the synthesis of hemicellulosic derivatives with bifunctional groups in butanol/water medium and their rheological properties. Carbohydrate Polymers, 83(4): 1922–1928

    Google Scholar 

  65. Guan Y, Zhang B, Tan X et al (2014) Organic-Inorganic Composite Films Based on Modified Hemicelluloses with Clay Nanoplatelets. ACS Sustainable Chemistry & Engineering 2(7):1811–1818

    Article  CAS  Google Scholar 

  66. Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the Preparation of Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cells. In: Electrolyte Organic-Inorganic Composite Polymer (ed) Inamuddin D, Mohammad AAsiri A M, Inamuddin D, Mohammad AAsiri A M, Inamuddin D, Mohammad AAsiri A Ms. Membranes. Springer International Publishing, Cham, pp 311–325

    Google Scholar 

  67. Bigand V, Pinel C, Da Silva Perez D et al (2011) Cationisation of galactomannan and xylan hemicelluloses. Carbohyd Polym 85(1):138–148

    Article  CAS  Google Scholar 

  68. Ren JL, Sun RC, Liu CF (2007) Etherification of hemicelluloses from sugarcane bagasse. J Appl Polym Sci 105(6):3301–3308

    Article  CAS  Google Scholar 

  69. Fang JM, Fowler P, Tomkinson J, Hill CAS (2002) Preparation and characterisation of methylated hemicelluloses from wheat straw. Carbohyd Polym 47(3):285–293

    Article  CAS  Google Scholar 

  70. Hartman J, Annchristine Albertsson A, Sjöberg J (2006) Surface- and Bulk-Modified Galactoglucomannan Hemicellulose Films and Film Laminates for Versatile Oxygen Barriers. Biomacromolecules, 7(6): 1983

    Google Scholar 

  71. Ren JL, Peng XW, Zhong LX, Peng F, Sun RC (2012) Novel hydrophobic hemicelluloses: synthesis and characteristic. Carbohydrate Polymer 89(1):152–157

    Article  CAS  Google Scholar 

  72. Pahimanolis N, Kilpelainen P, Master E, Ilvesniemi H, Seppala J (2015) Novel thiol- amine- and amino acid functional xylan derivatives synthesized by thiol-ene reaction. Carbohydrate Polymer 131:392–398

    Article  CAS  Google Scholar 

  73. Liu Z, Ni Y, Fatehi P, Saeed A (2011) Isolation and cationization of hemicelluloses from pre-hydrolysis liquor of kraft-based dissolving pulp production process. Biomass Bioenerg 35(5):1789–1796

    Article  CAS  Google Scholar 

  74. Schwikal K, Heinze T, Ebringerová A, Petzold K (2005) Cationic Xylan Derivatives with High Degree of Functionalization. Macromolecular Symposia 232(1):49–56

    Article  CAS  Google Scholar 

  75. Kisonen V, Xu C, Eklund P et al (2014) Cationised O-acetyl galactoglucomannans: synthesis and characterisation. Carbohydrate Polymer 99:755–764

    Article  CAS  Google Scholar 

  76. Wang S, Hou Q, Kong F, Fatehi P (2015) Production of cationic xylan-METAC copolymer as a flocculant for textile industry. Carbohydrate Polymer 124:229–236

    Article  CAS  Google Scholar 

  77. Kong WQ, Ren JL, Wang S, Li MF, Sun RC (2014) A promising strategy for preparation of cationic xylan by environment-friendly semi-dry oven process. Fibers and Polymers 15(5):943–949

    Article  CAS  Google Scholar 

  78. Ren JL, Peng F, Sun RC et al (2008) Synthesis of cationic hemicellulosic derivatives with a low degree of substitution in dimethyl sulfoxide media. J Appl Polym Sci 109(4):2711–2717

    Article  CAS  Google Scholar 

  79. Ibn Yaich A, Edlund UAlbertsson A C (2015) Enhanced formability and mechanical performance of wood hydrolysate films through reductive amination chain extension. Carbohydrate Polymer, 117: 346–54

    Google Scholar 

  80. Dax D, Eklund P, Hemming J et al (2013) Amphiphilic spruce galactoglucomannan derivatives based on naturally-occurring fatty acids. BioResources 8(3):3771

    Article  Google Scholar 

  81. Daus S, Elschner T, Heinze T (2010) Towards unnatural xylan based polysaccharides: reductive amination as a tool to access highly engineered carbohydrates. Cellulose 17(4):825–833

    Article  CAS  Google Scholar 

  82. Ehrenfreundkleinman T, Gazit Z, Gazit D et al (2002) Synthesis and biodegradation of arabinogalactan sponges prepared by reductive amination. Biomaterials 23(23):4621–4631

    Article  CAS  Google Scholar 

  83. Leppänen AS, Xu C, Eklund P et al (2014) Targeted functionalization of spruce O-acetyl galactoglucomannans—2,2,6,6-tetramethylpiperidin-1-oxyl-oxidation and carbodiimide-mediated amidation. J Appl Polym Sci 130(5):3122–3129

    Article  CAS  Google Scholar 

  84. Kuzmenko V, Hagg D, Toriz GGatenholm P (2014) In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydrate Polymer, 102: 862–8

    Google Scholar 

  85. MacCormick B, Vuong TV, Master ER (2018) Chemo-enzymatic Synthesis of Clickable Xylo-oligosaccharide Monomers from Hardwood 4-O-Methylglucuronoxylan. Biomacromol 19(2):521–530

    Article  CAS  Google Scholar 

  86. Fundador N G V, Enomoto-Rogers Y, Takemura AIwata T (2012) Acetylation and characterization of xylan from hardwood kraft pulp. Carbohyd Polym 87(1):170–176

    Article  CAS  Google Scholar 

  87. Sun RC, Fang JM, Tomkinson J, Jones GL (1999) Acetylation of wheat straw hemicelluloses in N, N-dimethylacetamide/LiCl solvent system. Ind Crops Prod 10(3):209–218

    Article  CAS  Google Scholar 

  88. Sun XF, Sun RC, Zhao L, Sun JX (2010) Acetylation of sugarcane bagasse hemicelluloses under mild reaction conditions by using NBS as a catalyst. J Appl Polym Sci 92(1):53–61

    Article  CAS  Google Scholar 

  89. Ren J L, Sun R C, Liu C F, Cao Z NLuo W (2007) Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohydrate Polymers, 70(4): 406–414

    Google Scholar 

  90. Stepan AM, King AWT, Kakko T et al (2013) Fast and highly efficient acetylation of xylans in ionic liquid systems. Cellulose 20(6):2813–2824

    Article  CAS  Google Scholar 

  91. Gröndahl M, Teleman A, Gatenholm P (2003) Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohyd Polym 52(4):359–366

    Article  Google Scholar 

  92. Ayoub A, Venditti RA, Pawlak JJ, Sadeghifar H, Salam A (2013) Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst. Ind Crops Prod 44:306–314

    Article  CAS  Google Scholar 

  93. Dong L, Hu H, Yang S, Cheng F (2014) Grafted copolymerization modification of hemicellulose directly in the alkaline peroxide mechanical pulping (APMP) effluent and its surface sizing effects on corrugated paper. Ind Eng Chem Res 53(14):6221–6229

    Article  CAS  Google Scholar 

  94. Enomoto-Rogers Y, Iwata T (2012) Synthesis of xylan-graft-poly(L-lactide) copolymers via click chemistry and their thermal properties. Carbohyd Polym 87(3):1933–1940

    Article  CAS  Google Scholar 

  95. Edlund U, Albertsson A-C (2014) A controlled radical polymerization route to polyepoxidated grafted hemicellulose materials. Polimery 59(01):60–65

    Article  CAS  Google Scholar 

  96. Saadatmand S, Edlund U, Albertsson A-C (2011) Compatibilizers of a purposely designed graft copolymer for hydrolysate/PLLA blends. Polymer 52(21):4648–4655

    Article  CAS  Google Scholar 

  97. Persson J, Dahlman OAlbertsson A C (2012) Birch xylan grafted with pla branches of predictable length. Bioresources, 7(3): 3640–3655

    Google Scholar 

  98. Fanta GF, Burr RC, Doane WM (1982) Graft polymerization of acrylonitrile and methyl acrylate onto hemicellulose. J Appl Polym Sci 27(11):4239–4250

    Article  CAS  Google Scholar 

  99. Voepel J, Edlund U, Albertsson A-C (2011) A versatile single-electron-transfer mediated living radical polymerization route to galactoglucomannan graft-copolymers with tunable hydrophilicity. J Polym Sci, Part A: Polym Chem 49(11):2366–2372

    Article  CAS  Google Scholar 

  100. Edlund U, Rodriguez-Emmenegger C, Brynda E, Albersson A-C (2012) Self-assembling zwitterionic carboxybetaine copolymers via aqueous SET-LRP from hemicellulose multi-site initiators. Polymer Chemistry 3(10):2920

    Article  CAS  Google Scholar 

  101. O’Malley J J, Marchessault R H (1966) Characterization of Graft Copolymers of Methylated Xylan and Polystyrene. J.phys.chem, 70(10): 3235–3240

    Google Scholar 

  102. Parikka K, Leppanen AS, Xu C et al (2012) Functional and anionic cellulose-interacting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides. Biomacromol 13(8):2418–2428

    Article  CAS  Google Scholar 

  103. Parikka K, Leppanen AS, Pitkanen L et al (2010) Oxidation of polysaccharides by galactose oxidase. J Agric Food Chem 58(1):262–271

    Article  CAS  Google Scholar 

  104. Leppanen AS, Xu C, Parikka K et al (2014) Targeted allylation and propargylation of galactose-containing polysaccharides in water. Carbohydrate Polymer 100:46–54

    Article  CAS  Google Scholar 

  105. Song X, Hubbe MA (2014) TEMPO-mediated oxidation of oat beta-D-glucan and its influences on paper properties. Carbohydrate Polymer 99:617–623

    Article  CAS  Google Scholar 

  106. Kohnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydrate Polymer 100:24–30

    Article  CAS  Google Scholar 

  107. Chemin M, Rakotovelo A, Ham-Pichavant F et al (2016) Periodate oxidation of 4-O-methylglucuronoxylans: Influence of the reaction conditions. Carbohydrate Polymer 142:45–50

    Article  CAS  Google Scholar 

  108. Ehrenfreund-Kleinman T, Domb A JGolenser J (2003) Polysaccharide scaffolds prepared by crosslinking of polysaccharides with chitosan or proteins for cell growth. Journal of Bioactive & Compatible Polymers, 18(5): 323–338

    Google Scholar 

  109. Luo YQ, Shen SQ, Luo JW, Wang XY, Sun RC (2015) Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg2+. Nanoscale 7(2):690–700

    Article  CAS  Google Scholar 

  110. Luo Y, Shen Z, Liu P, Zhao L, Wang X (2016) Facile fabrication and selective detection for cysteine of xylan/Au nanoparticles composite. Carbohydrate Polymer 140:122–128

    Article  CAS  Google Scholar 

  111. Peng H, Yang A, Xiong J (2013) Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium. Carbohydrate Polymer 91(1):348–355

    Article  CAS  Google Scholar 

  112. Silva AK, da Silva EL, Oliveira EE et al (2007) Synthesis and characterization of xylan-coated magnetite microparticles. Int J Pharm 334(1–2):42–47

    Article  CAS  Google Scholar 

  113. Wu CY, Peng XW, Zhong LX, Li XH, Sun RC (2016) Green synthesis of palladium nanoparticles via branched polymers: a bio-based nanocomposite for C-C coupling reactions. RSC Advances 6(38):32202–32211

    Article  CAS  Google Scholar 

  114. Chen W, Zhong LX, Peng XW, Lin JH, Sun RC (2013) Xylan-type hemicelluloses supported terpyridine–palladium(II) complex as an efficient and recyclable catalyst for Suzuki-Miyaura reaction. Cellulose 21(1):125–137

    Article  CAS  Google Scholar 

  115. Chen W, Zhong LX, Peng XW et al (2014) Xylan-type hemicellulose supported palladium nanoparticles: a highly efficient and reusable catalyst for the carbon-carbon coupling reactions. Catal Sci Technol 4(5):1426–1435

    Article  CAS  Google Scholar 

  116. Du J, Sun R, Zhang S et al (2004) Novel Polyelectrolyte Carboxymethyl Konjac Glucomannan-Chitosan Nanoparticles for Drug Delivery. Macromol Rapid Commun 25(9):954–958

    Article  CAS  Google Scholar 

  117. Heinze T, Petzold KHornig S (2008) Novel nanoparticles based on xylan. Cellulose Chemistry & Technology, 41(1): 13–18

    Google Scholar 

  118. Garcia RB, Jr TN, Praxedes AKC et al (2001) Preparation of micro and nanoparticles from corn cobs xylan. Polym Bull 46(5):371–379

    Article  CAS  Google Scholar 

  119. D. Phan The, F. Debeaufort, †,‡ C. Péroval et al (2002) Arabinoxylan-Lipid-Based Edible Films and Coatings. 3. Influence of Drying Temperature on Film Structure and Functional Properties. Journal of Agricultural & Food Chemistry, 50(8): 2423–8

    Google Scholar 

  120. Péroval C, Debeaufort F, Despré DVoilley A (2002) Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. J Agric Food Chem, 50 (14): 3977–83

    Google Scholar 

  121. Phan T D, Péroval C, Debeaufort F et al (2002) Arabinoxylan-lipids-based edible films and coatings. 2. Influence of sucroester nature on the emulsion structure and film properties. Journal of Agricultural & Food Chemistry, 50(2): 266–272

    Google Scholar 

  122. Hartman J, Albertsson A-C, Lindblad M SSjöberg J (2006) Oxygen barrier materials from renewable sources: Material properties of softwood hemicellulose-based films. Journal of Applied Polymer Science, 100(4): 2985–2991

    Google Scholar 

  123. Zhang PWhistler R L (2004) Mechanical properties and water vapor permeability of thin film from corn hull arabinoxylan. Journal of Applied Polymer Science, 93(6): 2896–2902

    Google Scholar 

  124. Chen GG, Qi XM, Li MP et al (2015) Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties. Scientific Reports 5:16405

    Article  CAS  Google Scholar 

  125. Liu Y X, Sun B, Wang Z LNi Y H (2016) Mechanical and Water Vapor Barrier Properties of Bagasse Hemicellulose-based Films. Bioresources, 11(2): 4226–4236

    Google Scholar 

  126. Gordobil O, Egues I, Urruzola ILabidi J (2014) Xylan-cellulose films: improvement of hydrophobicity, thermal and mechanical properties. Carbohydrate Polymer, 112: 56–62

    Google Scholar 

  127. Hu S, Gu J, Jiang F, Hsieh YL (2016) Holistic rice straw nanocellulose and hemicelluloses/lignin composite films. ACS Sustainable Chemistry & Engineering 4(3):728–737

    Article  CAS  Google Scholar 

  128. Huang B, Tang Y, Pei Q et al (2017) Hemicellulose-Based Films Reinforced with Unmodified and Cationically Modified Nanocrystalline Cellulose. Journal of Polymers and the Environment

    Google Scholar 

  129. Kisonen V, Prakobna K, Xu C et al (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. Journal of Materials Science 50(8):3189–3199

    Article  CAS  Google Scholar 

  130. MA R X, Pekarovicova A, D. Fleming III PHusovska V (2017) Preparation and characterization of hemicellulose-based printable films. Cellulose Chem. Technol., 51(9–10): 939-948

    Google Scholar 

  131. Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18(3):713–726

    Article  CAS  Google Scholar 

  132. Peng XW, Ren JL, Zhong LX, Sun RC (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 12(9):3321–3329

    Article  CAS  Google Scholar 

  133. Shao D, Yotprayoonsak P, Saunajoki V et al (2018) Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex. Nanotechnology 29(14):145203

    Article  CAS  Google Scholar 

  134. Bahcegul E, Toraman H E, Ozkan NBakir U (2012) Evaluation of alkaline pretreatment temperature on a multi-product basis for the co-production of glucose and hemicellulose based films from lignocellulosic biomass. Bioresour Technol, 103(1): 440–5

    Google Scholar 

  135. Kayserilioğlu B Ş, Bakir U, Yilmaz LAkkaş N (2003) Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties. Bioresource Technology, 87(3): 239–246

    Google Scholar 

  136. Ruiz HA, Cerqueira MA, Silva HD et al (2013) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydrate Polymer 92(2):2154–2162

    Article  CAS  Google Scholar 

  137. Svard A, Brannvall EEdlund U (2015) Rapeseed straw as a renewable source of hemicelluloses: Extraction, characterization and film formation. Carbohydrate Polymer, 133: 179–86

    Google Scholar 

  138. Oinonen P, Areskogh D, Henriksson G (2013) Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films. Carbohydrate Polymer 95(2):690–696

    Article  CAS  Google Scholar 

  139. C. Péroval, F. Debeaufort, †, ‡, ‡ A-M S et al (2003) Modified Arabinoxylan-Based Films. Part B. Grafting of Omega-3 Fatty Acids by Oxygen Plasma and Electron Beam Irradiation. Journal of Agricultural & Food Chemistry, 51(10): 3120–6

    Google Scholar 

  140. Peroval C, Debeaufort F, Seuvre AM et al (2004) Modified arabinoxylan-based films grafting of functional acrylates by oxygen plasma and electron beam irradiation. J Membr Sci 233(1–2):129–139

    Article  CAS  Google Scholar 

  141. Lee S G, An E y, Lee J B et al (2007) Enhanced cell affinity of poly(D, L-lactic-co-glycolic acid) (50/50) by plasma treatment with β-(1 → 3) (1 → 6)-glucan. Surface and Coatings Technology, 201(9–11): 5128-5131

    Google Scholar 

  142. Fredon E, Granet R, Zerrouki R et al (2002) Hydrophobic films from maize bran hemicelluloses. Carbohyd Polym 49(1):1–12

    Article  CAS  Google Scholar 

  143. Gröndahl M, Gustafsson Anna, Gatenholm P (2006) Gas-Phase Surface Fluorination of Arabinoxylan Films. Macromolecules 39(7):2718–2721

    Article  CAS  Google Scholar 

  144. Šimkovic I, Gedeon O, Uhliariková I, Mendichi RKirschnerová S (2011) Positively and negatively charged xylan films. Carbohydrate Polymers, 83(2): 769–775

    Google Scholar 

  145. Hesse S, Liebert THeinze T (2005) Studies on the Film Formation of Polysaccharide Based Furan-2-Carboxylic Acid Esters. Macromolecular Symposia, 232(1): 57–67

    Google Scholar 

  146. Kong W, Huang D, Xu G et al (2016) Graphene Oxide/Polyacrylamide/Aluminum Ion Cross-Linked Carboxymethyl Hemicellulose Nanocomposite Hydrogels with Very Tough and Elastic Properties. Chem Asian J 11(11):1697–1704

    Article  CAS  Google Scholar 

  147. Zhang W, Liang Z, Feng Q et al (2016) Reed hemicellulose-based hydrogel prepared by glow discharge eletrolysis plasma and its adsorption properties for heavy metal ions. Fresenius Environ Bull 25(6):1791–1798

    Google Scholar 

  148. Jing Z, Zhang G, Sun X-F, Shi XSun W (2014) Preparation and adsorption properties of a novel superabsorbent based on multiwalled carbon nanotubes-xylan composite and poly(methacrylic acid) for methylene blue from aqueous solution. Polymer Composites, 35(8): 1516–1528

    Google Scholar 

  149. Sun XF, Ye Q, Jing Z, Li Y (2014) Preparation of hemicellulose-g-poly(methacrylic acid)/carbon nanotube composite hydrogel and adsorption properties. Polym Compos 35(1):45–52

    Article  CAS  Google Scholar 

  150. Voepel J, Sjöberg J, Reif M et al (2009) Drug diffusion in neutral and ionic hydrogels assembled from acetylated galactoglucomannan. J Appl Polym Sci 112(4):2401–2412

    Article  CAS  Google Scholar 

  151. Zhao W, Nugroho RW, Odelius K et al (2015) In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying. ACS Appl Mater Interfaces 7(7):4202–4215

    Article  CAS  Google Scholar 

  152. Alexandra AR, Ulrica E, John S, Ann-Christine A, Henrik S (2008) Protein Release from Galactoglucomannan Hydrogels: Influence of Substitutions and Enzymatic Hydrolysis by mannanase. Biomacromol 9(8):2104–2110

    Article  CAS  Google Scholar 

  153. Guo B, Glavas L, Albertsson A-C (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38(9):1263–1286

    Article  CAS  Google Scholar 

  154. Dai QQ, Ren JL, Peng F et al (2016) Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection. Materials (Basel) 9(8):3–16

    Article  CAS  Google Scholar 

  155. Du J, Li B, Li C et al (2016) Tough and multi-responsive hydrogel based on the hemicellulose from the spent liquor of viscose process. Int J Biol Macromol 88:451–456

    Article  CAS  Google Scholar 

  156. Liu S, Chen F, Song X, Wu H (2016) Preparation and characterization of temperature- and pH-sensitive hemicellulose-containing hydrogels. Int J Polym Anal Charact 22(3):187–201

    Article  CAS  Google Scholar 

  157. Pahimanolis N, Sorvari A, Luong N, DSeppala J (2014) Thermoresponsive xylan hydrogels via copper-catalyzed azide-alkyne cycloaddition. Carbohydrate Polymer, 102: 637–44

    Google Scholar 

  158. Peng XW, Ren JL, Zhong LX, Peng F, Sun RC (2011) Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J Agric Food Chem 59(15):8208–8215

    Article  CAS  Google Scholar 

  159. Yang JY, Zhou XS, Fang J (2011) Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. Carbohyd Polym 86(3):1113–1117

    Article  CAS  Google Scholar 

  160. Zhang W, Zhu S, Bai Y et al (2015) Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels. Carbohydrate Polymer 122:11–17

    Article  CAS  Google Scholar 

  161. Zhao W, Glavas L, Odelius K, Edlund U, Albertsson A-C (2014) Facile and Green Approach towards Electrically Conductive Hemicellulose Hydrogels with Tunable Conductivity and Swelling Behavior. Chem Mater 26(14):4265–4273

    Article  CAS  Google Scholar 

  162. Zhao W, Glavas L, Odelius K, Edlund U, Albertsson A-C (2014) A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer 55(13):2967–2976

    Article  CAS  Google Scholar 

  163. Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284

    Article  CAS  Google Scholar 

  164. Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589

    Article  CAS  Google Scholar 

  165. Qi XM, Chen GG, Gong XD et al (2016) Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension. Scientific Reports 6:33603

    Article  CAS  Google Scholar 

  166. Gabrielii I, Gatenholm P (2015) Preparation and Properties of Hydrogels Based on Hemicellulose. J Appl Polym Sci 69(8):1661–1667

    Article  Google Scholar 

  167. Salam A, Venditti RA, Pawlak JJ, El-Tahlawy K (2011) Crosslinked hemicellulose citrate-chitosan aerogel foams. Carbohyd Polym 84(4):1221–1229

    Article  CAS  Google Scholar 

  168. Guan Y, Chen J, Qi X et al (2015) Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Ind Eng Chem Res 54(30):7393–7400

    Article  CAS  Google Scholar 

  169. Guan Y, Bian J, Peng F, Zhang XM, Sun RC (2014) High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydrate Polymer 101:272–280

    Article  CAS  Google Scholar 

  170. Guan Y, Zhang B, Bian J, Peng F, Sun R-C (2014) Nanoreinforced hemicellulose-based hydrogels prepared by freeze-thaw treatment. Cellulose 21(3):1709–1721

    Article  CAS  Google Scholar 

  171. Karaaslan MA, Tshabalala MA, Yelle DJ, Buschle-Diller G (2011) Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohyd Polym 86(1):192–201

    Article  CAS  Google Scholar 

  172. Alakalhunmaa S, Parikka K, Penttilä PA et al (2016) Softwood-based sponge gels. Cellulose 23(5):3221–3238

    Article  CAS  Google Scholar 

  173. Dax D, Bastidas M S C, Honorato C et al (2015) Tailor-made hemicellulose-based hydrogels reinforced with nanofibrillated cellulose. Nordic Pulp & Paper Research Journal, 30(3)

    Google Scholar 

  174. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal 243:572–590

    CAS  Google Scholar 

  175. Myung D, Waters D, Wiseman M et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19(6):647–657

    Article  CAS  Google Scholar 

  176. Maleki L, Edlund UAlbertsson A-C (2016) Green semi-IPN hydrogels by direct utilization of crude wood hydrolysates. ACS Sustainable Chemistry & Engineering, 4(8): 4370–4377

    Google Scholar 

  177. Maleki L, Edlund UAlbertsson A C (2017) Synthesis of full interpenetrating hemicellulose hydrogel networks. Carbohydrate Polymer, 170: 254–263

    Google Scholar 

  178. Meena R, Lehnen R, Saake B (2013) Microwave-assisted synthesis of kC/Xylan/PVP-based blend hydrogel materials: physicochemical and rheological studies. Cellulose 21(1):553–568

    Article  CAS  Google Scholar 

  179. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41

    Article  Google Scholar 

  180. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog Polym Sci 39(5):817–861

    Article  CAS  Google Scholar 

  181. Fonseca Silva TC, Habibi Y, Colodette JL, Lucia LA (2011) The influence of the chemical and structural features of xylan on the physical properties of its derived hydrogels. Soft Matter 7(3):1090–1099

    Article  CAS  Google Scholar 

  182. M S L, Annchristine Albertsson, Elisabetta Ranucci, Michele Laus, Giani E (2005) Biodegradable Polymers from Renewable Sources: Rheological Characterization of Hemicellulose-Based Hydrogels. Biomacromolecules, 6(2): 684

    Google Scholar 

  183. Lindblad MS, Ranucci E, Albertsson AC (2001) Biodegradable Polymers from Renewable Sources. New Hemicellulose-Based Hydrogels. Macromolecular Rapid Communications 22(12):962–967

    Article  CAS  Google Scholar 

  184. Tanodekaew S, Channasanon S, Uppanan P (2006) Xylan/polyvinyl alcohol blend and its performance as hydrogel. J Appl Polym Sci 100(3):1914–1918

    Article  CAS  Google Scholar 

  185. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews 4(1):37–59

    Article  CAS  Google Scholar 

  186. Rezakazemi M, Zhang Z (2018) 2.29 Desulfurization Materials A2-Dincer, Ibrahim. In: (ed) Comprehensive Energy Systems. Elsevier, Oxford, p 944–979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwen Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, X., Du, F., Zhong, L. (2019). Synthesis, Characterization, and Applications of Hemicelluloses Based Eco-friendly Polymer Composites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_43

Download citation

Publish with us

Policies and ethics