Skip to main content

Nanocellulose-Reinforced Adhesives for Wood-Based Panels

  • Chapter
  • First Online:
Book cover Sustainable Polymer Composites and Nanocomposites

Abstract

Considering that the solid wood, being a heterogeneous and anisotropic product, presents several disadvantages such as unsatisfactory mechanical properties for certain uses and limitations of wood due to dimensions of wood pieces, reconstituted wood products have been developed by gluing of veener, boards, lignocellulosic fibers, etc., which are joined using adhesives. It should be noted that changes in adhesion to wood are desirable in terms of performance improvement and adhesive economy. Within the constant search for better performance of adhesives, the use of nanocelluloses appears as a viable option. Further, identification of reinforcement of adhesives with nanocellulose is being considered as an opportunity among the several opportunities offered by nanotechnology for the forest products industry. Use of nanocelluloses as reinforcements in adhesives for the production of reconstituted wood panels has several benefits such as possibility of altering the properties of adhesives, gain in mechanical and physical properties of panels and reduction in formaldehyde emissions by panels using synthetic adhesives. Accordingly, this chapter discusses the main types of reconstituted wood panels, types and characteristics of the adhesives employed, aspects that influence the bonding and use of additives in the glue mixture. Besides, it also addresses the use of nanocellulose and its effects on the properties of reconstituted wood panels. Despite all the advantages emntioned above, the Chapter ends with the conclusion that there are still some problems to be looked into suggesting need for more research either in the application of nanocellulose and its modification in different types of resin, as well as application technologies appropriate to the new conditions of the adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdul KHPS, Tye YY, Leh CP et al (2018) Cellulose reinforced biodegradable polymer composite film for packaging applications. In: Jawaid M, Swain S (eds) Bionanocomposites for packaging applications. Springer, Cham, pp 49–64

    Chapter  Google Scholar 

  2. Albino VCS, Mori FA, Mendes LM (2012) Influence of anatomical features and extractives content wood of Eucalyptus grandis w. hill ex maiden in quality bonding. Cienc Florest 22(4):803–811

    Google Scholar 

  3. Albuquerque CEC, Latorraca JV (2000) Anatomic features, influence in penetration and adhesion of adhesives. Floresta Ambient 7(1):158–166

    Google Scholar 

  4. Almeida VC (2009) Assessment of the potential for the use of tropical wood waste for the production of laterally glued panels—EGP. Federal University of Parana, Thesis

    Google Scholar 

  5. American Society for Testing and Materials (2006) ASTM D 5456: standard specification for evaluation of structural composite lumber products. ASTM, West Conshohocken

    Google Scholar 

  6. Atta-Obeng E (2011) Characterization of phenol formaldehyde adhesive and adhesive-wood particle composites reinforced with microcrystalline cellulose. Dissertation, Auburn University

    Google Scholar 

  7. Ayrilmis N (2007) Effect of panel density on dimensional stability of medium and high density fiberboards. J Mater Sci 42:8551–8557

    Article  CAS  Google Scholar 

  8. Ayrilmis N, Lee Y-K, Kwon JH et al (2016) Formaldehyde Emission and VOCs from LVLs Produced with Three Grades of Urea-Formaldehyde Resin Modified with Nanocellulose. Build Environ 97:82–87

    Article  Google Scholar 

  9. Baghersad S (2016) Coating os silk fabrics by PVA/Ciprofloxain HCl nanofibers for biomedical applications. Iran J Polym Sci Tech 29(2):171–184

    Google Scholar 

  10. Baldwin RF, Kurpiel FT, Baldwin RW (2017) Growth and reinvention 2017: a north american perspective on the global wood-based panel industry. Forest Prod J 67(3–4):144–151

    Article  Google Scholar 

  11. Bianche JJ (2014) Wood-adhesive interface and joints’ resistance bonded with different adhesives and weight. Federal University of Viçosa, Thesis

    Google Scholar 

  12. Bilodeau MA, Bousfield DW (2015) Composite building products bound with cellulose nanofibers. Patent US 20,150,033,983 A1, 05 Feb 2015

    Google Scholar 

  13. Buligon EA (2015) Physical and mechanical properties of laminated veneer lumber reinforced gfrp. C Fl 25(3):731–741

    Google Scholar 

  14. Campos CI (2005) Physical-mechanical properties of MDF produced with wood fibers from reforestation and alternative adhesives at different levels. University of São Paulo, Thesis

    Google Scholar 

  15. Candan Z, Akbulut T (2015) Physical and mechanical properties of nanoreinforced particleboard composites. Maderas Cienc Tecnol 17(2):319–334

    CAS  Google Scholar 

  16. Cardoso GV, Pereira FT, Ferreira ES et al (2016) Nanocelulose occmo urea-formaldehyde catalyst for the production of agglomerated panels of Pinus sp. In: Paper presented at the XV EBRAMEM—Brazilian meeting on timber and timber structures, Brazilian Institute of Wood and Wood, Curitiba, Structures, Curitiba, 9–11 Mar 2016

    Google Scholar 

  17. Carlquist S (2001) Comparative wood anatomy. Springer, Berlim

    Book  Google Scholar 

  18. Carvalho MZ (2016) Multivariate approach to the behavior of physical-chemical properties and characterization of natural adhesives based on tannins. Federal University of Lavras, Thesis

    Google Scholar 

  19. Carvalho L, Martins J, Costa C (2010) Transport phenomena. In: Thoemen H, Irle M, Sernek M (eds) Wood-based panels: an introduction for specialists. Brunel University Press, London, pp 123–295

    Google Scholar 

  20. Costa TG (2016) Characterization of synthetic adhesives with addition of silica nanoparticles as reinforcing filler. Federal University of Lavras, Thesis

    Google Scholar 

  21. Cui J, Lu X, Zhou X et al (2014). Enhancement of mechanical strength of particleboard using environmentally friendly pine (Pinus pinaster L.) tannin adhesives with cellulose nanofibers. Ann For Sci 72(1):27–32

    Google Scholar 

  22. Cunha RCB (2016) Implementation of a method for measuring Gel Time of formaldehyde-based resins. Dissertation, Higher Institute of Engineering of Porto

    Google Scholar 

  23. Damásio RAP, Carvalho FJB, Carneiro ACO et al (2017) Effect of CNC interaction with urea-formaldehyde adhesive in bonded joints of Eucalyptus sp. Sci For 45(113):169–176

    Article  Google Scholar 

  24. Diem H, Mathias G, Wagner RA (2012) Amino resins. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim

    Google Scholar 

  25. Din Z-U, Xiong H, Wang Z et al (2018) Effects of different emulsifiers on the bonding performance, freeze-thaw stability and retrogradation behavior of the resulting high amylose starch-based wood adhesive. Colloids Surf A 538(5):192–201

    Article  CAS  Google Scholar 

  26. Ding X, Richter DL, Matuana LM et al (2011) Efficient one-pot synthesis and loading of self-assembled amphiphilic chitosan nanoparticles for low-leaching wood preservation. Carbohydr Polym 86:58–64

    Article  CAS  Google Scholar 

  27. Ebnesajjad S, Landrock AH (2014) Adhesives technology handbook, 3rd edn. Elsevier, Amsterdã

    Google Scholar 

  28. Eckelman CA (1999) Brief survey of wood adhesives. Purdue University Cooperative Extension Service, West Lafayette

    Google Scholar 

  29. Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  30. Esteban L, Casasús AG, Oramas CP et al (2003) Wood and its anatomy. Fundación Conde de Valle de Salazar, Madrid

    Google Scholar 

  31. Ferreira JC (2017) Synthesis of urea-formaldehyde adhesives with the addition of kraft lignin and nanocrystalline cellulose. Federal University of Viçosa, Thesis

    Google Scholar 

  32. Fink J (2013) Reactive polymers Fundamentals and applications—a concise guide to industrial applications, 2nd edn. William Andrew, Norwich

    Google Scholar 

  33. Finnish Forest Industries Federation (2002) Handbook of finnish plywood. Kirjapaino Markprint Oy, Lahti

    Google Scholar 

  34. Fiorelli J (2002) Use of carbon fibers and glass fibers to reinforce wooden beams. Dissertation, São Paulo University

    Google Scholar 

  35. Food and Agriculture Organization (2018) Global production and trade of forest products in 2016. http://www.fao.org/forestry/statistics/80938/en/ Accessed 12 Mar 2018

  36. Forestry Products Laboratory (1999) Wood handbook—wood as an engineering material. General Technical Reports FPL-GTR-113. USDA, Forest Service, Madison

    Google Scholar 

  37. Forestry Products Laboratory (2010) Wood handbook—wood as an engineering material. General Technical Reports FPL-GTR-190. USDA, Forest Service, Madison

    Google Scholar 

  38. Forestry Products Laboratory (2012) Nanocelluloses: potential materials for advanced forest products. In: Proceedings of nanotechnology in wood composites symposium. General Technical Reports FPL-GTR-218. USDA, Forest Service, Madison

    Google Scholar 

  39. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  CAS  Google Scholar 

  40. Fujisawa S, Okita Y, Fukuzumi H et al (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibrils films with free carboxyl groups. Carbohydr Polym 84(1):579–583

    Article  CAS  Google Scholar 

  41. Gardziella A, Pilato LA, Knop A (2000) Phenolic resins: chemistry, applications, standardization, safety and ecology, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  42. Gavrilovic GI, Neskovic O, Diporovic MM et al (2010) Molar-mass distribution of urea-formaldehyde resins of different degrees of polymerisation by MALDI-TOF mass spectrometry. J Serb Chem Soc 75(5):689–99

    Article  CAS  Google Scholar 

  43. Gindl-Altmutter W, Veigel S (2015) Nanocellulose-modified wood adhesives. In: Oksman K, Mathew AP, Bismarck A et al (eds) Handbook of green materials. World Scientific Publishing, Hackensack, pp 253–264

    Google Scholar 

  44. Gonçalvez FG (2012) Agglomerated panels of Acacia mangium wood with urea-formaldehyde adhesives and powdered tannin of Acacia mearnsii bark. Rural Federal University of Rio de Janeiro, Thesis

    Google Scholar 

  45. Gonçalvez FG, Lelis RCC (2009) Properties of two synthetic resins after addition of Modified tannin. Floresta Ambient 12(2):01–07

    Google Scholar 

  46. Grigsby WJ, Thumm A (2012) The interactions between wax and UF resin in medium density fiberboard. Eur J Wood Wood Prod 70(4):507–517

    Article  CAS  Google Scholar 

  47. Gupta R, Kandasubramanian B (2015) Hybrid caged nanostructure ablative composites of octaphenyl-POSS/RF as heat Shields. RSC Adv 5:8757–8769

    Article  CAS  Google Scholar 

  48. Haubrich JL, Gonçalves C, Tonet A (2007) Vinyl adhesives present solutions for wood. Rev Mad 103:66–70

    Google Scholar 

  49. Hellmeister V (2017) OSB panel of raft wood residue (Ochroma pyramidale). University of São Paulo, Thesis

    Google Scholar 

  50. Hu K, Kulkarni DD, Choi I et al (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39(11):1934–1972

    Article  CAS  Google Scholar 

  51. International Agency for Research on Cancer (2006) Formaldehyde, 2-butoxyethanol and 1-tertbutoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Hum 88:1–478

    Google Scholar 

  52. International Agency for Research on Cancer (2012) Chemical agents and related occupations: a review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 100:1–628

    Google Scholar 

  53. Irle M, Barbu C (2010) Wood-based panel technology. In: Thoemen H, Irle M, Sernek (eds) Wood-based panels: an introduction for specialists. Brunel University Press, London, pp 1–94

    Google Scholar 

  54. Iwakiri S (2005) Painéis de madeira reconstituída. FUPEF, Curitiba

    Google Scholar 

  55. Iwamoto S (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9):2571–2576

    Article  CAS  Google Scholar 

  56. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238

    Google Scholar 

  57. Kaboorani A, Riedl B, Blanchet P et al (2012) Nanocrystalline cellulose (NCC): a renewable nano-material for polyvinyl acetate (PVA) adhesive. Eur Polym J 48(11):1829–1837

    Article  CAS  Google Scholar 

  58. Khalili SMR, Jafarkarimi MH, Abdollahi MA (2009) Creep analysis of fibre reinforced adhesives in single lap joints-experimental study. Int J Adhes Adhes 29(6):656–661

    Article  CAS  Google Scholar 

  59. Khalili SMR, Shokuhfar A, Hoseini SD et al (2008) Experimental study of the influence of adhesive reinforcement in lap joints for composite structures subjected to mechanical loads. Int J Adhes Adhes 28(8):436–444

    Article  CAS  Google Scholar 

  60. Khedari J, Nankongnab N, Hirunlabh J et al (2004) New low-cost insulation particleboards from mixture of durian peel and coconut coir. Build Environ 39(1):59–65

    Article  Google Scholar 

  61. Kim MG (2000) Examination of selected synthesis parameters for typical wood adhesive-type urea-formaldehyde resins by 13C NMR spectroscopy. I. J Appl Polym Sci 75(10):1243–1254

    Article  CAS  Google Scholar 

  62. Kinloch AJ (1987) Adhesion and adhesives: science and technology. Chapman & Hall, London

    Book  Google Scholar 

  63. Kolakovic R, Peltonel L, Laaksonen T et al (2011) Spray-dried cellulose nanofibers as novel tablet excipient. AAPS Pharm Sci Tech 12(4):1366–1373

    Article  CAS  Google Scholar 

  64. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic Force Microscopy Characterization of Cellulose Nanocrystals. Langmuir 26(6):4480–4488

    Google Scholar 

  65. Lam F (2001) Modern structural wood products. Prog Struct Eng Mat 3(4):238–245

    Article  Google Scholar 

  66. Lengowski EC (2016) Formation and characterization of films with nanocellulose. Federal University of Paraná, Thesis

    Google Scholar 

  67. Lima CKP, Mori FA, Mendes LM et al (2007) Anatomic and chemical characteristics of eucalyptus clones wood and its influence upon bonding. Cerne 13(2):123–129

    Google Scholar 

  68. Liu Z, Zhang Y, Wang X et al (2015) Reinforcement of lignin-based phenol-formaldehyde adhesive with nano-crystalline cellulose (NCC): curing behavior and bonding property of plywood. Mater Sci Appl 6:567–575

    CAS  Google Scholar 

  69. Liu Y, Laks P, Heiden P (2002) Controlled release of biocides in solid wood. II. Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. J Appl Polym Sci 86(3):608–614

    Google Scholar 

  70. Lubis MAR, Hong MK, Park BD (2017) Hydrolytic removal of cured urea–formaldehyde resins in medium-density fiberboard for recycling. J Wood Chem Technol. https://doi.org/10.1080/02773813.2017.1316741

  71. López-Suevos F, Eyholzer C, Bordeanu N et al (2010) DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose 17(2):387–398

    Article  CAS  Google Scholar 

  72. Mahrdt E, Pinkl S, Schmidberger C et al (2016) Effect of addition of microfibrillated cellulose to Ureaformaldehyde on selected adhesive characteristics and distribution in particle board. Cellulose 23(1):571–580

    Article  CAS  Google Scholar 

  73. Meng Q-X, Zhu G-Q, Yu M-M et al (2018) The effect of thickness on plywood vertical fire spread. Procedia Eng 211:555–564

    Article  Google Scholar 

  74. Messmer A (2015) Life cycle assessment (LCA) of adhesives used in wood consructions. Master thesis (Ecological System Design), Swiss Federal Institute of Technology Zurich, Swiss, Zurich p 82

    Google Scholar 

  75. Molina JC, Calil Neto C, Calil Junior C et al (2013) Evaluation of the behavior of rectangular beams (LVL) with horizontal and vertical lamination. Mad Arq Eng 14(35):1–13

    Google Scholar 

  76. Mondragon G, Peña-Rodriguez C, Gonzáles A et al (2015) Bionanocomposites based on gelatin matrix and nanocellulose. Eur Polym J 62:1–9

    Article  CAS  Google Scholar 

  77. Motta JP, Oliveira JTS, Alves RC (2012) Influence of moisture content on the adhesion properties of eucalyptus wood. Construindo 4(2):96–103

    Google Scholar 

  78. National Institute of Industrial Research (2017) The complete technology book on wood and its derivatives. NIIR, Delhi

    Google Scholar 

  79. Nelson K, Restina T, Iakovlev M et al (2016) American process: production of low cost nanocellulose for renewable, advanced materials applications. In: Madsen L, Svedberg E (eds) Materials research for manufacturing. Springer Series in Materials Science, vol 224. Springer, Cham

    Google Scholar 

  80. Nguyen DM, Grillet A-C, Diep TMH et al (2018) Influence of thermo-pressing conditions on insulation materials from bamboo fibers and proteins based bone glue. Ind Crops Prod 111:834–845

    Article  CAS  Google Scholar 

  81. Nitthiyah A (2013) Optimization and characterization of melamine urea formaldehyde (MUF) based adhesive with waste rubber powder (WRP) as filler. University Malaysia Pahang, Thesis

    Google Scholar 

  82. Olorunnisola AO (2018) Design of wood connections. In: Olorunnisola AO (ed) Design os structural elements with tropical hardwoods. Springer, Berlim, pp 209–236

    Chapter  Google Scholar 

  83. Ozarska B (1999) A review of the utilization of hardwoods for LVL. Woood Sci Technol 33(4):341–351

    Article  CAS  Google Scholar 

  84. Park B-D, Kang E-C, Park S-B et al (2011) Empirical correlations between test methods of measuring formaldehyde emission of plywood, particleboard and medium density fiberboard. Eur J Wood Wood Prod 69(2):311–316

    Article  CAS  Google Scholar 

  85. Périchaud AA, Isakakov RM, Kurbatov A et al (2012) Auto-reparation of polyimide film coatings for aerospace applications challenges and perspectives. In: Abadie MJM (ed) High performance polymers—polyimides based—from chemistry to applications. InTech, London, pp 215–244

    Google Scholar 

  86. Pervan D (2018) Mechanical locking system for panels and method of installing same. US Patent 2018/0,030,738 A1, 1 Feb 2018

    Google Scholar 

  87. Peschel P, Hornhardy E, Nennewitz I et al (2016) Tabellenbuch Holztechnik. Europa-Lehrmittel Nourney, Vollmer GmbH & Co. KG, Haan

    Google Scholar 

  88. Petrie EW (2000) Handbook of adhesives andokl sealents, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  89. Pizzi A (2015) Synthetic adhesives for wood panels: chemistry and technology. In: Mittal KL (ed) Progress in adhesion and adhesives. Wiley, Hoboken, pp 85–126

    Chapter  Google Scholar 

  90. Polymer Properties Database (2015) Melamine-formaldehyde resins. http://polymerdatabase.com/polymer%20classes/MelamineFormaldehyde%20type.html. Accessed 30 Mar 2018

  91. Prolongo SG, Gude MR, Ureña A (2009) Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers. J Nanosci Nanotechnol 9(10):6181–6187

    Article  CAS  Google Scholar 

  92. Prolongo SG, Gude MR, Ureña A (2010) Rheological behaviour of nanoreinforced epoxy adhesives of low electrical resistivity for joining carbon fiber/epoxy laminates. J Adhes Sci Technol 24(6):1097–1112

    Article  CAS  Google Scholar 

  93. Ramage MH, Burridge H, Busse-Wicher M et al (2017) The wood from the trees: the use of timber in construction. Renew Sustain Energy Rev 68:333–359

    Article  Google Scholar 

  94. Richter K, Bordeanu N, Lópes-Suevos F et al (2009) Performance of cellulose nanofibrils in wood adhesives. In: Schindel-Bidinelli E (ed) Proceedings of the swiss bonding. Rapperswil-Jona, Switzerland, pp 239–246

    Google Scholar 

  95. Risholm-Sundman M, Larsen A, Vestin E et al (2007) Formaldehyde emission—comparison of different standard methods. Atmospheric Environ 41(15):3193–3202

    Article  CAS  Google Scholar 

  96. Rojas J, Bedoya M, Ciro Y (2015) Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. In: Polleto M (ed) Cellulose—fundamental aspects and current trends. InTech, Rijeka, pp 193–228

    Google Scholar 

  97. Rumble JR (2018) CRC handbook of chemistry and physics, 98th edn. CRC Press, Boca Raton

    Google Scholar 

  98. Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805

    Google Scholar 

  99. Samyn P, Barhoum A, Öhlund T et al (2018) Review: nanoparticles and nanostructured materials in papermaking. J Mater Sci 53(1):146–184

    Article  CAS  Google Scholar 

  100. Schultz J, Nardin M (2003) Theories and mechanisms of adhesion. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology. Marcel Decker, New York, pp 61–75

    Google Scholar 

  101. Sehaqui H, Allais M, Zhou Q et al (2011) Wood cellulose biocomposites with fibrous structures at micro-and nanoscale. Compos Sci Technol 71(3):382–387

    Article  CAS  Google Scholar 

  102. Sheykhi ZH, Tabarsa T, Mashkour M (2016) Effects of nano-cellulose and resine on MDF properties produced from recycled mdf using electrolise method. J Wood Forest Sci Technol 23(3):271–288

    Google Scholar 

  103. Singh A, Dawson B, Rickard C et al (2008) Light, confocal and scanning electron microscopy of wood-adhesive interface. Microsc Analy 22(3):5–8

    Google Scholar 

  104. Song J, Chen C, Zhu S et al (2018) Processing bulk natural wood into a high-performance structural material. Nature 554:224–228

    Article  CAS  Google Scholar 

  105. Syverud K, Chinga-Carrasco G, Toledo J et al (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84(3):1033–1038

    Article  CAS  Google Scholar 

  106. Tanpichai S, Quero F, Nogi M et al (2012) Effective young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromol 13(5):1340–1349

    Article  CAS  Google Scholar 

  107. Thoemen H, Irle M, Sernek M (eds) (2010) Wood-based panels: an introduction for specialists. Brunel University Press, London

    Google Scholar 

  108. Toquarto S (2002) Random heterogeneous materials. Springer, Berlim

    Google Scholar 

  109. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827

    Google Scholar 

  110. Urbinati CV (2013) Influence of anatomical characteristics on cast joints of Schizolobium parayba var. Amazonicum (hyber ex. Ducke) barneby (Paricá). Thesis, Federal University of Lavras

    Google Scholar 

  111. Veigel S, Rathke J, Weigl M et al (2012) Particle board and oriented strand board prepared with nanocellulose-reinforced adhesive. J Nanomater. https://doi.org/10.1155/2012/158503

  112. Veronez D, Farias ELP, Fraga R et al (2010) Potential for occupacional health rish for those teachers, researchers and technical workers of anatomy who are exposed to formaldehyde. InterfacEHS 5(2):63–76

    Google Scholar 

  113. Wang XM, Casilla R, Zhang Y et al (2016) Effect of extreme ph on bond durability of selected structural wood adhesives. Wood Fiber Sci 48(4):1–15

    Google Scholar 

  114. Wang X, Huang Z, Cooper P et al (2010) The ability of wood to buffer highly acidic and alkaline adhesives. Wood Fiber Sci 42(3):398–405

    CAS  Google Scholar 

  115. Wang X, Huang Z, Cooper P et al (2013) Effects of pH on lap-shear strength for aspen veneer. Wood Fiber Sci 45(3):294–302

    CAS  Google Scholar 

  116. Wegner T, Skog KE, Ince PJ et al (2010) Uses and desirable properties of wood in the 21st century. J Forest 108(4):165–173

    Google Scholar 

  117. Xu X, Yao F, Wu Q et al (2009) The influence of wax-sizing on dimension stability and mechanical properties of bagasse particleboard. Industrial Crops Produ 29(1):80–85

    Article  CAS  Google Scholar 

  118. Yoon SH, Kim BC, Lee KH et al (2010) Improvement of the adhesive fracture toughness of bonded aluminum joints using e-glass fibers at cryogenic temperature. J Adhes Sci Technol 24(2):429–444

    Article  CAS  Google Scholar 

  119. Yuce B, Mastrocinque E, Packianather MS et al (2014) Neural network design and feature selection using principal component analysis and Taguchi method for identifying wood veneer defects. Produm Manufac Res 2(1):291–308

    Article  Google Scholar 

  120. Zeni M, Favero D, Pacheci K et al (2015) Preparation of microcellulose (Mcc) and nanocellulose (Ncc) from eucalyptus kraft ssp pulp. Polym Sci 1:1–5

    Google Scholar 

  121. Zeppenfeld G, Grunwald D (2005) Klebstoffe in der Holz-und Möbelindustrie. DRW-Verlag, Weinbrenner

    Google Scholar 

  122. Zhang Y, You B, Huang H et al (2008) Preparation of nanosilica reinforced waterborne silylated polyether adhesive with high shear strength. J Appl Polym Sci 109(4):2434–2441

    Article  CAS  Google Scholar 

  123. Zhang H, Zhang J, Song S et al (2011) Modified nanocrystalline cellulose from two kinds of modifiers used for improving formaldehyde emission and bonding strength of urea-formaldehyde resin adhesive. BioResources 6:4430–4438

    CAS  Google Scholar 

  124. Zhong Y, Jing X, Wang S et al (2016) Behavior investigation of phenolic hydroxyl groups during the pyrolysis of cured phenolic resin via molecular dynamics simulation. Polym Degrad Stab 125:97–104

    Article  CAS  Google Scholar 

  125. Zhou J, Chen J, He M et al (2016) Cellulose acetate ultrafiltration membranes reinforced by cellulose nanocrystals: preparation and characterization. J Appl Polym Sci 133(39):1–7. https://doi.org/10.1002/app.43946

    Article  CAS  Google Scholar 

Download references

Acknowledgements

At the outset, the authors express their sincere thanks to the Editors of the book (Inamuddin, Sabu Thomas, Raguvendra Mishra and Abdullah M. Asiri), particularly Prof. Inamuddin for inviting us to contribute this Chapter. The authors place on record and appreciate the kind permission given by some of the authors (who have given permission to use their figures), M/s. Elsevier Inc Publishers, IN TECH d.o.o., Rijeka (Croatia), Iran Polymer and Petrochemical Institute with the scientific cooperation of Iran Polymer Society, Royal Society of Chemistry, UK, Chemical Retrieval on the Web (CROW), Springer and Wiley Publishers to reproduce some of the figures from their publications free of charges. One of the authors (KGS) would like to thank the PPISR, Bangalore-India with whom he is associated with presently for their encouragement and interest in this collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kestur Gundappa Satyanarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lengowski, E.C., Bonfatti Júnior, E.A., Kumode, M.M.N., Carneiro, M.E., Satyanarayana, K.G. (2019). Nanocellulose-Reinforced Adhesives for Wood-Based Panels. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_35

Download citation

Publish with us

Policies and ethics