Skip to main content

Organic/Silica Nanocomposite Membranes Applicable to Green Chemistry

  • Chapter
  • First Online:

Abstract

Generally, organic/inorganic nanocomposites consist of organic polymers incorporated with inorganic fillers in nanoscale. They integrate the benefits of the inorganic materials (e.g. thermal and chemical stability, stiffness) and the organic polymers (e.g., dielectric, flexibility, processability, and ductility). Recently, polymer-Si nanocomposites have received considerable attention and have been applied in many different applications. Proton-exchange membrane fuel cells (PEMFCs) have appeared as an environmentally friendly device to meet the energy demands of the recent years. Nafion® is a commonly recognized and commercialized membrane which offers exceptional electrochemical attributes below 80 °C, and under extremely humidified environments. Nevertheless, a reduction in the proton conductivity of Nafion® over 80 °C and decreased humidity, as well as expensive membrane price, has motivated the progress of novel membranes. The incorporation of fillers, particularly nano-sized Si particulates, to the polymeric matrix was employed to partially resolve the problems. Thus, this account will provide a broad summary of the methods and techniques employed for the nanocomposites preparation as well as a short explanation about their properties, characterizations, and applications. In-depth explanations of particular subjects can be found in related references.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589

    Article  CAS  Google Scholar 

  2. Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes: preparation, properties, and fuel cell applications. Springer International Publishing, Cham, pp 311–325

    Chapter  Google Scholar 

  3. Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2015) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321

    Article  CAS  Google Scholar 

  4. Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA–4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493

    Article  CAS  Google Scholar 

  5. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39 817–861

    Google Scholar 

  6. Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135

    Article  CAS  Google Scholar 

  7. Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041

    Article  CAS  Google Scholar 

  8. Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225

    Article  CAS  Google Scholar 

  9. Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284

    Article  CAS  Google Scholar 

  10. Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470

    Article  CAS  Google Scholar 

  11. Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18

    Article  CAS  Google Scholar 

  12. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  Google Scholar 

  13. Rezakazemi M, Maghami M, Mohammadi T (2018) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Periodica Polytech, Chem Eng 62:299–304

    Article  Google Scholar 

  14. Schadler LS, Kumar SK, Benicewicz BC, Lewis SL, Harton SE (2007) Designed interfaces in polymer nanocomposites: a fundamental viewpoint. MRS Bull 32:335–340

    Article  CAS  Google Scholar 

  15. Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67

    Article  CAS  Google Scholar 

  16. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41

    Article  Google Scholar 

  17. Mura F, Silva R, Pozio A (2007) Study on the conductivity of recast Nafion®/montmorillonite and Nafion®/TiO 2 composite membranes. Electrochim Acta 52:5824–5828

    Article  CAS  Google Scholar 

  18. Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH (2008) ZrO 2–SiO 2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sources 177:247–253

    Article  CAS  Google Scholar 

  19. Aparicio M, Mosa J, Etienne M, Durán A (2005) Proton-conducting methacrylate–silica sol–gel membranes containing tungstophosphoric acid. J Power Sources 145:231–236

    Article  CAS  Google Scholar 

  20. Di Vona M, Sgreccia E, Donnadio A, Casciola M, Chailan J, Auer G, Knauth P (2011) Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO 2. J Membr Sci 369:536–544

    Article  CAS  Google Scholar 

  21. Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO 2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257

    Article  CAS  Google Scholar 

  22. Rezakazemi M, Zhang Z (2018) 2.29 Desulfurization Materials A2—Dincer, Ibrahim. In: Comprehensive energy systems. Elsevier, Oxford, pp 944–979

    Google Scholar 

  23. Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields. Math Comput Model 55:1540–1557

    Article  Google Scholar 

  24. Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer–inorganic nanocomposite membranes for gas separation. Sep Purif Technol 55:281–291

    Article  CAS  Google Scholar 

  25. Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley

    Google Scholar 

  26. Xing D, He G, Hou Z, Ming P, Song S (2011) Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane. Int J Hydrogen Energy 36:2177–2183

    Article  CAS  Google Scholar 

  27. Cho Y-H, Kim S-K, Kim T-H, Cho Y-H, Lim JW, Jung N, Yoon W-S, Lee J-C, Sung Y-E (2011) Preparation of MEA with the polybenzimidazole membrane for high temperature PEM fuel cell. Electrochem Solid-State Lett 14:B38–B40

    Article  CAS  Google Scholar 

  28. Tago T, Kuwashiro N, Nishide H (2007) Preparation of acid-functionalized poly (phenylene oxide) s and poly (phenylene sulfone) and their proton conductivity. Bulletin of the Chem Soc Jpn 80:1429–1434

    Article  CAS  Google Scholar 

  29. Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem Eng

    Google Scholar 

  30. Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232

    Article  CAS  Google Scholar 

  31. Gómez-Romero P, Sanchez C, Functional hybrid materials. Wiley (2006)

    Google Scholar 

  32. Zhang S, Xu T, Wu C (2006) Synthesis and characterizations of novel, positively charged hybrid membranes from poly (2, 6-dimethyl-1, 4-phenylene oxide). J Membr Sci 269:142–151

    Article  CAS  Google Scholar 

  33. Wu C, Xu T, Yang W (2005) Synthesis and characterizations of novel, positively charged poly (methyl acrylate)–SiO 2 nanocomposites. Eur Polymer J 41:1901–1908

    Article  CAS  Google Scholar 

  34. Saito R, Kobayashi S-I, Hayashi H, Shimo T (2007) Surface hardness and transparency of poly(methyl methacrylate)-silica coat film derived from perhydropolysilazane. J Appl Polym Sci 104:3388–3395

    Article  CAS  Google Scholar 

  35. Shen L, Du Q, Wang H, Zhong W, Yang Y (2004) In situ polymerization and characterization of polyamide-6/silica nanocomposites derived from water glass. Polym Int 53:1153–1160

    Article  CAS  Google Scholar 

  36. Ding X, Jiang Y, Yu K, Hari B, Tao N, Zhao J, Wang Z (2004) Silicon dioxide as coating on polystyrene nanoparticles in situ emulsion polymerization. Mater Lett 58:1722–1725

    Article  CAS  Google Scholar 

  37. Laugel N, Hemmerlé J, Porcel C, Voegel J-C, Schaaf P, Ball V (2007) Nanocomposite silica/polyamine films prepared by a reactive layer-by-layer deposition. Langmuir 23:3706–3711

    Article  CAS  Google Scholar 

  38. Grund S, Kempe P, Baumann G, Seifert A, Spange S (2007) Nanocomposites prepared by twin polymerization of a single-source monomer. Angew Chem Int Ed 46:628–632

    Article  CAS  Google Scholar 

  39. Suffner J, Schechner G, Sieger H, Hahn H (2007) In-situ coating of silica nanoparticles with acrylate-based polymers. Chem Vap Deposition 13:459–464

    Article  CAS  Google Scholar 

  40. Senkevich JJ, Desu SB (1999) Near-room-temperature thermal chemical vapor deposition of poly(chloro-p-xylylene)/SiO2 nanocomposites. Chem Mater 11:1814–1821

    Article  CAS  Google Scholar 

  41. Mishra AK, Chattopadhyay S, Rajamohanan P, Nando GB (2011) Effect of tethering on the structure-property relationship of TPU-dual modified Laponite clay nanocomposites prepared by ex-situ and in-situ techniques. Polymer 52:1071–1083

    Article  CAS  Google Scholar 

  42. Seo W, Sung Y, Han S, Kim Y, Ryu O, Lee H, Kim WN (2006) Synthesis and properties of polyurethane/clay nanocomposite by clay modified with polymeric methane diisocyanate. J Appl Polym Sci 101:2879–2883

    Article  CAS  Google Scholar 

  43. Mishra AK, Rajamohanan P, Nando GB, Chattopadhyay S (2011) Structure–property of thermoplastic polyurethane–clay nanocomposite based on covalent and dual-modified Laponite. Adv Sci Lett 4:65–73

    Article  CAS  Google Scholar 

  44. Mishra A, Nando G, Chattopadhyay S (2008) Exploring preferential association of laponite and cloisite with soft and hard segments in TPU-clay nanocomposite prepared by solution mixing technique. J Polym Sci, Part B: Polym Phys 46:2341–2354

    Article  CAS  Google Scholar 

  45. Aparicio M, Durán A (2004) Hybrid organic/inorganic sol-gel materials for proton conducting membranes. J Sol-Gel Sci Technol 31:103–107

    Article  CAS  Google Scholar 

  46. Aparicio M, Castro Y, Duran A (2005) Synthesis and characterisation of proton conducting styrene-co-methacrylate–silica sol–gel membranes containing tungstophosphoric acid. Solid State Ionics 176:333–340

    Article  CAS  Google Scholar 

  47. Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36:191–217

    Article  CAS  Google Scholar 

  48. Lin B, Cheng S, Qiu L, Yan F, Shang S, Lu J (2010) Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application. Chem Mater 22:1807–1813

    Article  CAS  Google Scholar 

  49. Darbandi M, Thomann R, Nann T (2007) Hollow silica nanospheres: in situ, semi-in situ, and two-step synthesis. Chem Mater 19:1700–1703

    Article  CAS  Google Scholar 

  50. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  51. Bronstein LM, HCD, Kim G (Ed) (2004) Dekker encyclopedia of nanoscience and nanotechnology. Taylor & Francis, New York, pp 1–10

    Google Scholar 

  52. Osseo-Asare K, Arriagada F (1990) Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf 50:321–339

    Article  CAS  Google Scholar 

  53. Vassiliou AA, Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Non-Isothermal Crystallisation Kinetics of In Situ Prepared Poly (ε-caprolactone)/Surface-Treated SiO2 Nanocomposites. Macromol Chem Phys 208:364–376

    Article  CAS  Google Scholar 

  54. Jana SC, Jain S (2001) Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42:6897–6905

    Article  CAS  Google Scholar 

  55. Nalwa HS (2003) Handbook of organic-inorganic hybrid materials and nanocomposites. In: Zhang MQR, MZ, Friedrich K (Ed) American Scientific Publishers, California, pp 113–150

    Google Scholar 

  56. Blum FD (2004) Encyclopedia of polymer science and technology, concise. In: Kroschwitz JI (Ed) Wiley, pp 38–50

    Google Scholar 

  57. Gomes D, Buder I, Nunes SP (2006) Sulfonated silica-based electrolyte nanocomposite membranes. J Polym Sci, Part B: Polym Phys 44:2278–2298

    Article  CAS  Google Scholar 

  58. Wu T-M, Chu M-S (2005) Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. J Appl Polym Sci 98:2058–2063

    Article  CAS  Google Scholar 

  59. Ahn SH, Kim SH, Lee SG (2004) Surface-modified silica nanoparticle–reinforced poly(ethylene 2, 6-naphthalate). J Appl Polym Sci 94:812–818

    Article  CAS  Google Scholar 

  60. Lai YH, Kuo MC, Huang JC, Chen M (2007) On the PEEK composites reinforced by surface-modified nano-silica. Mater Sci Eng, A 458:158–169

    Article  CAS  Google Scholar 

  61. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Poly 42:167–183

    Article  CAS  Google Scholar 

  62. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304

    Article  CAS  Google Scholar 

  63. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 62:1327–1340

    Article  CAS  Google Scholar 

  64. Zhang MQ, Rong MZ, Zhang HB, Friedrich K (2003) Mechanical properties of low nano-silica filled high density polyethylene composites. Polym Eng Sci 43:490–500

    Article  CAS  Google Scholar 

  65. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos. Sci. Technol. 65:635–645

    Article  CAS  Google Scholar 

  66. Ruan WH, Huang XB, Wang XH, Rong MZ, Zhang MQ (2006) Effect of drawing induced dispersion of nano-silica on performance improvement of poly(propylene)-based nanocomposites. Macromol Rapid Commun 27:581–585

    Article  CAS  Google Scholar 

  67. Zhu Y, Li Z, Zhang D, Tanimoto T (2006) PET/SiO2 nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:1161–1167

    Article  CAS  Google Scholar 

  68. Zhu Y-G, Li Z-Q, Zhang D, Tanimoto T (2006) Thermal behaviors of poly(ethylene terephthalate)/SiO2 nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:1351–1356

    Article  CAS  Google Scholar 

  69. Petrovicova E, Knight R, Schadler L, Twardowski T (2000) Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties. J. Appl. Polym. Sci. 78:2272–2289

    Google Scholar 

  70. Petrovicova E, Knight R, Schadler L, Twardowski T (2000) Nylon 11/silica nanocomposite coatings applied by the HVOF process. I. Microstructure and morphology. J. Appl. Polym. Sci. 77:1684–1699

    Google Scholar 

  71. Schadler LS, Laut KO, Smith RW, Petrovicova E (1997) Microstructure and mechanical properties of thermally sprayed silica/nylon nanocomposites. J Therm Spray Technol 6:475–485

    Article  CAS  Google Scholar 

  72. Jafari H, Emami S, Mahmoudi Y (2017) Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: a study on nozzle geometrical parameters. Appl Therm Eng 111:745–758

    Article  CAS  Google Scholar 

  73. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28:1539–1641

    Google Scholar 

  74. Shang X-Y, Zhu Z-K, Yin J, Ma X-D (2002) Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater 14:71–77

    Article  CAS  Google Scholar 

  75. Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR (2003) Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. J Appl Polym Sci 89:2072–2078

    Article  CAS  Google Scholar 

  76. Crosby AJ, Lee JY (2007) Polymer Nanocomposites: the “Nano” effect on mechanical properties. Polym Rev 47:217–229

    Article  CAS  Google Scholar 

  77. Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic-inorganic materials. J Mater Chem 15:3787–3811

    Article  CAS  Google Scholar 

  78. Lach R, Kim G-M, Michler GH, Grellmann W, Albrecht K (2006) Indentation fracture mechanics for toughness assessment of PMMA/SiO2 nanocomposites. Macromol Mater Eng 291:263–271

    Article  CAS  Google Scholar 

  79. Joseph J, Tseng C-Y, Hwang B-J (2011) Phosphonic acid-grafted mesostructured silica/Nafion hybrid membranes for fuel cell applications. J Power Sources 196:7363–7371

    Article  CAS  Google Scholar 

  80. Kumar GG, Kim A, Nahm KS, Elizabeth R (2009) Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC. IJHE 34:9788–9794

    CAS  Google Scholar 

  81. Choi Y, Kim Y, Kim HK, Lee JS (2010) Direct synthesis of sulfonated mesoporous silica as inorganic fillers of proton-conducting organic–inorganic composite membranes. J Membr Sci 357:199–205

    Article  CAS  Google Scholar 

  82. Choi J, Wycisk R, Zhang W, Pintauro PN, Lee KM, Mather PT (2010) High Conductivity Perfluorosulfonic Acid Nanofiber Composite Fuel-Cell Membranes. Chemsuschem 3:1245–1248

    Article  CAS  Google Scholar 

  83. Kim Y, Choi Y, Kim HK, Lee JS (2010) New sulfonic acid moiety grafted on montmorillonite as filler of organic–inorganic composite membrane for non-humidified proton-exchange membrane fuel cells. J Power Sources 195:4653–4659

    Article  CAS  Google Scholar 

  84. Bébin P, Caravanier M, Galiano H (2006) Nafion®/clay-SO 3 H membrane for proton exchange membrane fuel cell application. J Membr Sci 278:35–42

    Article  CAS  Google Scholar 

  85. Buquet CL, Fatyeyeva K, Poncin-Epaillard F, Schaetzel P, Dargent E, Langevin D, Nguyen QT, Marais S (2010) New hybrid membranes for fuel cells: plasma treated laponite based sulfonated polysulfone. J Membr Sci 351:1–10

    Article  CAS  Google Scholar 

  86. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2010) Sulfonated polysulfone/POSS nanofiber composite membranes for PEM fuel cells. JElS 157:B914–B919

    CAS  Google Scholar 

  87. Zhang Y, Wang S, Xiao M, Bian S, Meng Y (2009) The silica-doped sulfonated poly (fluorenyl ether ketone) s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells. IJHE 34:4379–4386

    CAS  Google Scholar 

  88. Liu Y-L (2009) Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes. J Membr Sci 332:121–128

    Article  CAS  Google Scholar 

  89. Quartarone E, Magistris A, Mustarelli P, Grandi S, Carollo A, Zukowska G, Garbarczyk J, Nowinski J, Gerbaldi C, Bodoardo S (2009) Pyridine-based PBI composite membranes for PEMFCs. Fuel Cells 9:349–355

    Article  CAS  Google Scholar 

  90. Cui X, Zhong S, Wang H (2007) Organic–inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid. J Power Sources 173:28–35

    Article  CAS  Google Scholar 

  91. Adjemian K, Lee S, Srinivasan S, Benziger J, Bocarsly A (2002) Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80–140 C. JElS 149:A256–A261

    CAS  Google Scholar 

  92. Pereira F, Vallé K, Belleville P, Morin A, Lambert S, Sanchez C (2008) Advanced mesostructured hybrid silica−nafion membranes for high-performance PEM fuel cell. Chem Mater 20:1710–1718

    Article  CAS  Google Scholar 

  93. Mulmi S, Park CH, Kim HK, Lee CH, Park HB, Lee YM (2009) Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells. J Membr Sci 344:288–296

    Article  CAS  Google Scholar 

  94. Shao Z-G, Joghee P, Hsing I-M (2004) Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J Membr Sci 229:43–51

    Article  CAS  Google Scholar 

  95. Chang J-H, Park JH, Park G-G, Kim C-S, Park OO (2003) Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. J Power Sources 124:18–25

    Article  CAS  Google Scholar 

  96. Wilhelm M, Jeske M, Marschall R, Cavalcanti WL, Tölle P, Köhler C, Koch D, Frauenheim T, Grathwohl G, Caro J (2008) New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO 3 H-functionalized mesoporous Si-MCM-41 particles. J Membr Sci 316:164–175

    Article  CAS  Google Scholar 

  97. Kim YM, Choi SH, Lee HC, Hong MZ, Kim K, Lee H-I (2004) Organic–inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs). Electrochim Acta 49:4787–4796

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mashallah Rezakazemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezakazemi, M., Dashti, A., Hajilary, N., Shirazian, S. (2019). Organic/Silica Nanocomposite Membranes Applicable to Green Chemistry. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_22

Download citation

Publish with us

Policies and ethics