Skip to main content

Diagnostic, Prognostic, Predictive and Therapeutic Tissue Biomarkers in Gastric Cancer

  • Chapter
  • First Online:
Gastric Cancer In The Precision Medicine Era

Abstract

Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide and is a peculiar disease due to its heterogeneity. Recently, numerous studies have investigated the molecular basis of gastric cancer and addressed the mechanisms of its pathogenesis, invasion and metastasis.

The discovery of new biomarkers would bring great benefits to patients because more accurate bio-pathological characterizations would allow better treatment and follow-up decisions.

Our purpose is to provide the salient information on various tissue biomarkers for the early diagnosis, treatment and prognosis of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saberi Anvara M, Minuchehra Z, Shahlaeib M, Kheitana S. Gastric cancer biomarkers; A systems biology approach. Biochem Biophys Rep. 2018;13:141–6; 2405–5808/© 2018 Published by Elsevier B.V. https://doi.org/10.1016/j.bbrep.2018.01.001.

    Article  Google Scholar 

  2. Lee J, Kim K-M. Biomarkers for gastric cancer: molecular classification revisited. Precision Future Med. 2017;1(2):59–68. https://doi.org/10.23838/pfm.2017.00079.

    Article  CAS  Google Scholar 

  3. Wroblewski LE, Peek RM, Wilson KT. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev. 2010;23:713–39. https://doi.org/10.1128/CMR.00011-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song X, Xin N, Wang W, Zhao C. Wnt/β-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis. Oncotarget. 2015;6:35579–88. https://doi.org/10.18632/oncotarget.5758.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tatematsu M, Tsukamoto T, Inada K. Stem cells and gastric cancer: role of gastric and intestinal mixed intestinal metaplasia. Cancer Sci. 2003;94(2):135–41. https://doi.org/10.1111/j.1349-7006.2003.tb01409.x.

    Article  CAS  PubMed  Google Scholar 

  6. Baek DH, Kim GH, Park DY, Lee BE, Jeon HK, Lim W, Song GA. Gastric epithelial dysplasia: characteristics and long-term follow-up results after endoscopic resection according to morphological categorization. BMC Gastroenterol. 2015;15:17. https://doi.org/10.1186/s12876-015-0249-7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2010.

    Google Scholar 

  8. Peleteiro B, Lopes C, Figueiredo C, Lunet N. Salt intake and gastric cancer risk according to Helicobacter pylori infection, smoking, tumour site and histological type. Br J Cancer. 2011;104(1):198–207. https://doi.org/10.1038/sj.bjc.6605993.

    Article  CAS  PubMed  Google Scholar 

  9. Paredes J, Figueiredo J, Albergaria A, et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta. 2012;1826(2):297–311. https://doi.org/10.1016/j.bbcan.2012.05.002.

    Article  CAS  PubMed  Google Scholar 

  10. Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma. Nat Rev Dis Primers. 2017;3:17036. https://doi.org/10.1038/nrdp.2017.36.

    Article  PubMed  Google Scholar 

  11. Oyama K, Fushida S, Kinoshita J, Okamoto K, Makino I, Nakamura K, Hayashi H, Inokuchi M, Nakagawara H, Tajima H, Fujita H, Takamura H, Ninomiya I, Kitagawa H, Fujimura T, Ohta T. Serum cytokeratin 18 as a biomarker for gastric cancer. Clin Exp Med. 2013;13:289–95. https://doi.org/10.1007/s10238-012-0202-9.

    Article  CAS  PubMed  Google Scholar 

  12. Kim MA, Lee HS, Yang HK, Kim WH. Cytokeratin expression profile in gastric carcinomas. Hum Pathol. 2004;35(5):576–81. https://doi.org/10.1016/j.humpath.2003.12.007.

    Article  CAS  PubMed  Google Scholar 

  13. Altree-Tacha D, Tyrrell J, Haas T. CDH17 is a more sensitive marker for gastric adenocarcinoma than CK20 and CDX2. Arch Pathol Lab Med. 2017;141(1):144–150. https://doi.org/10.5858/arpa.2015-0404-OAR.

  14. Boltin D, Niv Y. Mucins in gastric cancer – an update. J Gastrointest Dig Syst. 2013;3(123):15519. https://doi.org/10.4172/2161-069X.1000123.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: an in-depth literature review. World J Exp Med. 2015;5(2):84–102. https://doi.org/10.5493/wjem.v5.i2.84.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim JJ, Kim JY, Hur H, Cho YK, Han S-U. Clinicopathologic significance of gastric adenocarcinoma with neuroendocrine features. J Gastric Cancer. 2011;11(4):195–9. https://doi.org/10.5230/jgc.2011.11.4.195.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mao XY, Wang XG, Lv XJ, Xu L, Han CB. COX-2 expression in gastric cancer and its relationship with angiogenesis using tissue microarray. World J Gastroenterol. 2007;13:3466–71. https://doi.org/10.3748/wjg.v13.i25.3466.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Murata H, Kawano S, Tsuji S, Tsuji M, Sawaoka H, Kimura Y, Shiozaki H, Hori M. Cyclooxygenase-2 overexpression enhances lymphatic invasion and metastasis in human gastric carcinoma. Am J Gastroenterol. 1999;94:451–5. https://doi.org/10.1111/j.1572-0241.1999.876_e.x.

    Article  CAS  PubMed  Google Scholar 

  19. Mrena J, Wiksten JP, Thiel A, Kokkola A, Pohjola L, Lundin J, Nordling S, Ristimäki A, Haglund C. Cyclooxygenase-2 is an independent prognostic factor in gastric cancer and its expression is regulated by the messenger RNA stability factor HuR. Clin Cancer Res. 2005;11:7362–8. https://doi.org/10.1158/1078-0432.ccr-05-0764.

    Article  CAS  PubMed  Google Scholar 

  20. Al-Moundhri MS, Al-Hadabi I, Al-Mawaly K, Kumar S, Al-Lawati FA, Bhatnager G, Kuruvila S, Al-Hamdani A, El-Sayed SM, Al-Bahrani B. Prognostic significance of cyclooxygenase-2, epidermal growth factor receptor 1, and microvascular density in gastric cancer. Med Oncol. 2012;29:1739–47. https://doi.org/10.1007/s12032-011-0098-3.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng J, Fan X-M. Role of cyclooxygenase-2 in gastric cancer development and progression. World J Gastroenterol. 2013;19(42):7361–8. https://doi.org/10.3748/wjg.v19.i42.7361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dowty JG, Win AK, et al. Cancer risks for MLH1 and MSH2 mutation carriers. Hum Mutat. 2013;34(3):490. https://doi.org/10.1002/humu.22262.doi:10.1002/humu.22262.

    Article  CAS  PubMed  Google Scholar 

  23. Karim S. Clinicopathological and p53 gene alteration comparison between young and older patients with gastric cancer. Asian Pac J Cancer Prev. 2014;15:1375–9. https://doi.org/10.7314/APJCP.2014.15.3.1375.

    Article  PubMed  Google Scholar 

  24. Pietrantonio F, De Braud F, Da Prat V, et al. A review on biomarkers for prediction of treatment outcome in gastric cancer. Anticancer Res. 2013;33:1257–66. Available from: http://ar.iiarjournals.org/content/33/4/1257.full.pdf.

    CAS  PubMed  Google Scholar 

  25. Gonçalves AR, Carneiro AJ, Martins I, et al. Prognostic significance of p53 protein expression in early gastric cancer. Pathol Oncol Res. 2011;17:349. https://doi.org/10.1007/s12253-010-9333-z.

    Article  CAS  PubMed  Google Scholar 

  26. Yıldırım M, Kaya V, Demirpence O, Gunduz S, Bozcuk H. Prognostic significance of p53 in gastric cancer: a meta analysis. Asian Pac J Cancer Prev. 2015;16(1):327–32. https://doi.org/10.7314/APJCP.2015.16.1.327.

    Article  PubMed  Google Scholar 

  27. Lu HZ, Wu JP, Luo W, et al. Correlation between aneuploidy of chromosome 17, over- expression of TP53 and TOP-II alpha and the clinicophatological features and diagnosis of adenocarcinoma. ZhonghuaZhong Liu ZaZhi. 2009;31(10):754–8. https://doi.org/10.3760/cma.j.issn.0253-3766.2009.10.009.

    Article  CAS  Google Scholar 

  28. Carlomagno N, Incollingo P, Tammaro V, et al. Diagnostic, predictive, prognostic, and therapeutic molecular biomarkers in third millennium: a breakthrough in gastric cancer. BioMed Res Int. 2017;2017:7869802, 11 pages. https://doi.org/10.1155/2017/7869802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sisik A, Kaya M, Bas G, Basak F, Alimoglu O. CEA and CA 19-9 are still valuable markers for the prognosis of colorectal and gastric cancer patients. Asian Pac J Cancer Prev. 2013;14(7):4289–94. https://doi.org/10.7314/APJCP.2013.14.7.4289.

    Article  PubMed  Google Scholar 

  30. Saito G, Sadahiro S, Okada K, Tanaka A, Suzuki T, Kamijo A. Relation between carcinoembryonic antigen levels in colon cancer tissue and serum carcinoembryonic antigen levels at initial surgery and recurrence. Oncology. 2016;91:85–9. https://doi.org/10.1159/000447062.

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Chu K-M. E-cadherin and gastric cancer: cause, consequence, and applications. BioMed Res Int. 2014;2014:637308, 9 pages. https://doi.org/10.1155/2014/637308.

    CAS  Google Scholar 

  32. Corso G, Carvalho J, Marrelli D, et al. Somatic mutations and deletions of the e-cadherin gene predict poor survival of patients with gastric cancer. J Clin Oncol. 2013;31(7):868–75. https://doi.org/10.1200/JCO.2012.44.4612. Epub 2013 Jan 22.

    Article  CAS  PubMed  Google Scholar 

  33. Fuse N, Kuboki Y, et al. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer. 2016;19(1):183–91. https://doi.org/10.1007/s10120-015-0471-6. Epub2015Feb 15.

    Article  PubMed  Google Scholar 

  34. Kim MA, Lee HS, Lee HE, Jeon YK, Yang HK, Kim WH. EGFR in gastric carcinomas: prognostic significance of protein overexpression and high gene copy number. Histopathology. 2008;52(6):738–46. https://doi.org/10.1111/j.1365-2559.2008.03021.x. Epub 2008 Apr 5.

    Article  CAS  PubMed  Google Scholar 

  35. Yashiro M, Matsuoka T. Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer. World J Gastroenterol. 2016;22(8):2415–23. https://doi.org/10.3748/wjg.v22.i8.2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hierro C, Alsina M, Sánchez M, Serra V, Rodon J, Tabernero J. Targeting the fibroblast growth factor receptor 2 in gastric cancer: promise or pitfall? Ann Oncol. 2017;28(6):1207–16. https://doi.org/10.1093/annonc/mdx081.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu M, Tang R, Doshi S, et al. Exposure-response analysis of rilotumumab in gastric cancer: the role of tumour MET expression. Br J Cancer. 2015;112(3):429–37. https://doi.org/10.1038/bjc.2014.649. Epub 2015 Jan 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Macedo F, Ladeira K, Longatto-Filho A, Martins SF. Gastric cancer and angiogenesis: is VEGF a useful biomarker to assess progression and remission? J Gastric Cancer. 2017;17(1):1–10. https://doi.org/10.5230/jgc.2017.17.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ying J, Xu Q, Liu B, Zhang G, Chen L, Pan H. The expression of the PI3K/AKT/mTOR pathway in gastric cancer and its role in gastric cancer prognosis. Onco Targets Ther. 2015;8:2427–33. https://doi.org/10.2147/OTT.S88592. eCollection 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ohtsu A, Ajani JA, Bai YX, Bang YJ, Chung HC, Pan HM, Sahmoud T, Shen L, Yeh KH, Chin K, Muro K, Kim YH, Ferry D, Tebbutt NC, Al-Batran SE, Smith H, Costantini C, Rizvi S, Lebwohl D, Van Cutsem E. Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J ClinOncol. 2013;31(31):3935–43. https://doi.org/10.1200/JCO.2012.48.3552. Epub 2013 Sep 16.

    Article  CAS  Google Scholar 

  41. Zhu L, Li Z, Wang Y, Zhang C, Liu Y, Qu X. Microsatellite instability and survival in gastric cancer: a systematic review and meta-analysis. Mol Clin Oncol. 2015;3(3):699–705. https://doi.org/10.3892/mco.2015.506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fang WL, Chang SC, Lan YT, et al. Microsatellite instability is associated with a better prognosis for gastric cancer patients after curative surgery. World J Surg. 2012;36:2131–8. https://doi.org/10.1007/s00268-012-1652-7.

    Article  PubMed  Google Scholar 

  43. Otsu H, Iimori M, Ando K, Saeki H, Aishima S, Oda Y, Morita M, Matsuo K, Kitao H, Oki E, Maehara Y. Gastric cancer patients with high PLK1 expression and DNA aneuploidy correlate with poor prognosis. Oncology. 2016;91:31–40. https://doi.org/10.1159/000445952.

    Article  CAS  PubMed  Google Scholar 

  44. Cai XP, Chen LD, Song HB, Zhang CX, Yuan ZW, Xiang ZX. PLK1 promotes epithelial-mesenchymal transition and metastasis of gastric carcinoma cells. Am J Transl Res. 2016;8:4172–83. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095310/pdf/ajtr0008-4172.pdf

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rüschoff J, Hanna W, Bilous M, Hofmann M, Osamura RY, Penault-Llorca F, van de Vijver M, Viale G. HER2 testing in gastric cancer: a practical approach. Mod Pathol. 2012;25:637–50. https://doi.org/10.1038/modpathol.2011.198.

    Article  CAS  PubMed  Google Scholar 

  46. Kimura Y, Oki E, Yoshida A, et al. Significance of accurate human epidermal growth factor receptor-2 (HER2) evaluation as a new biomarker in gastric cancer. Anticancer Res. 2014;34(8):4207–12. Available from: http://ar.iiarjournals.org/content/34/8/4207.full.pdf.

    PubMed  Google Scholar 

  47. Kim MA, Jung EJ, Lee HS, et al. Evaluation of HER-2 gene status in gastric carcinoma using immunohistochemistry, fluorescence in situ hybridization, and real-time quantitative polymerase chain reaction. Hum Pathol. 2007;38(9):1386–93. https://doi.org/10.1016/j.humpath.2007.02.005.

    Article  CAS  PubMed  Google Scholar 

  48. Fife BT, Pauken KE. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci. 2011;1217(1):45–59. https://doi.org/10.1111/j.1749-6632.2010.05919.x.

    Article  CAS  PubMed  Google Scholar 

  49. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, Eder JP, Golan T, Le DT, Burtness B, Mc Ree AJ, Lin C-C, Pathiraja K, Lunceford J, Emancipator K, Juco J, Koshiji M, Bang Y-J. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17:717–26. https://doi.org/10.1016/S1470-2045(16)00175-3.

    Article  CAS  PubMed  Google Scholar 

  50. Patnaik A, Kang SP, Rasco D, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21:4286–93. https://doi.org/10.1158/1078-0432.CCR-14-2607.

    Article  CAS  PubMed  Google Scholar 

  51. Wu Y, Cao D, Qu L, Cao X, Jia Z, Zhao T, Wang Q, Jiang J. PD-1 and PD-L1 co-expression predicts favorable prognosis in gastric cancer. Oncotarget. 2017;8(38):64066–82. https://doi.org/10.18632/oncotarget.19318.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shen B, Ormsby AH, Shen C, et al. Cytokeratin expression patterns in noncardia, intestinal metaplasia-associated gastric adenocarcinoma: implication for the evaluation of intestinal metaplasia and tumors at the esophagogastric junction. Cancer. 2002;94:820–31. https://doi.org/10.1002/cncr.10215.

    Article  CAS  PubMed  Google Scholar 

  53. Kim HS, Lee JS, Freund JN, et al. CDX-2 homeobox gene expression in human gastric carcinoma and precursor lesions. J Gastroenterol Hepatol. 2006;21:438–42. https://doi.org/10.1111/j.1440-1746.2005.03933.x.

    Article  CAS  PubMed  Google Scholar 

  54. Wong HH, Chu P. Immunohistochemical features of the gastrointestinal tract tumors. J Gastrointest Oncol. 2012;3(3):262–84. https://doi.org/10.3978/j.issn.2078-6891.2012.019.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jang BG, Lee BL, Kim WH. Intestinal stem cell markers in the intestinal metaplasia of stomach and Barrett’s esophagus. PLoS One. 2015;10(5):e0127300. https://doi.org/10.1371/journal.pone.0127300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Flucke U, Steinborn E, Dries V, et al. Immunoreactivity of cytokeratins (CK7, CK20) and mucin peptide core antigens (MUC1, MUC2, MUC5AC) in adenocarcinomas, normal and metaplastic tissues of the distal oesophagus, oesophago-gastric junction and proximal stomach. Histopathology. 2003;43:127–34. https://doi.org/10.1046/j.1365-2559.2003.01680.x.

    Article  CAS  PubMed  Google Scholar 

  57. Lau SK, Weiss LM, Chu PG. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol. 2004;122:61–9. https://doi.org/10.1309/9R66-73QE-C06D-86Y4.

    Article  PubMed  Google Scholar 

  58. Tsukamoto T, Yokoi T, Maruta S, et al. Gastric adenocarcinoma with chief cell differentiation. Pathol Int. 2007;57(8):517–22. https://doi.org/10.1111/j.1440-1827.2007.02134.x.

    Article  PubMed  Google Scholar 

  59. Singhi AD, Lazenby AJ, Montgomery EA. Gastric adenocarcinoma with chief cell differentiation. A proposal for reclassification as oxyntic gland polyp/adenoma. Am J Surg Pathol. 2012;36(7):1030–5. https://doi.org/10.1097/PAS.0b013e31825033e7.

    Article  PubMed  Google Scholar 

  60. Chan K, Brown IS, Kyle T, Lauwers GY, Kumarasinghe MP. Chief cell predominant gastric polyps: a series of 12 cases with literature review. Histopathology. 2016;68(6):825–33. https://doi.org/10.1111/his.12859.

    Article  PubMed  Google Scholar 

  61. Abrahao-Machado LF, Scapulatempo-Neto C. HER2 testing in gastric cancer: an update. World J Gastroenterol. 2016;22(19):4619–25. https://doi.org/10.3748/wjg.v22.i19.4619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vincenzo Canzonieri MD, et al. Exocrine and endocrine modulation in common gastric carcinoma. Am J Clin Pathol. 2012;137:712–21. https://doi.org/10.1309/AJCPM13KVNCZQBUV.

    Article  PubMed  Google Scholar 

  63. Sampieri CL, León-Córdoba K, Remes-Troche JM. Matrix metalloproteinases and their tissue inhibitors in gastric cancer as molecular markers. J Cancer Res Ther. 2013;9(3):356–63. https://doi.org/10.4103/0973-1482.119302.

    Article  CAS  PubMed  Google Scholar 

  64. Han T-S, Hur K, Xu G, et al. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut. 2015;64(2):203–14. https://doi.org/10.1136/gutjnl-2013-306640.

    Article  CAS  PubMed  Google Scholar 

  65. Bult P, Vogelaar IP, Ligtenberg MJL, Hoogerbrugge N, van Krieken JH. HNF4A immunohistochemistry facilitates distinction between primary and metastatic breast and gastric carcinoma. Virchows Arch. 2014;464(6):673–9. https://doi.org/10.1007/s00428-014-1574-x.

    Article  CAS  PubMed  Google Scholar 

  66. Uozaki H, Barua RR, Minhua S, et al. Transcriptional factor typing with SOX2, HNF4aP1, and CDX2 closely relates to tumor invasion and Epstein-Barr virus status in gastric cancer. Int J Clin Exp Pathol. 2011;4:230–40. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071656/pdf/ijcep0004-0230.pdf.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun X, Wang T, Guan Z-R, Zhang C, Chen Y, Jin J, Hua D. FBXO2, a novel marker for metastasis in human gastric cancer. Biochem Biophys Res Commun. 2018;495:2158–64. https://doi.org/10.1016/j.bbrc.2017.12.097.

    Article  CAS  PubMed  Google Scholar 

  68. Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB, et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology. 2013;145:1312–22. https://doi.org/10.1053/j.gastro.2013.08.050.

    Article  CAS  PubMed  Google Scholar 

  69. Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A, et al. Frequent overexpression of Aurora kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer. 2008;112:1688–98. https://doi.org/10.1002/cncr.23371.

    Article  CAS  PubMed  Google Scholar 

  70. Dar AA, Belkhiri A, El-Rifai W. The aurora kinase A regulates GSK-3beta in gastric cancer cells. Oncogene. 2009;28:866–75. https://doi.org/10.1038/onc.2008.434.

    Article  CAS  PubMed  Google Scholar 

  71. Katsha A, Belkhiri A, Goff L, El-Rifai W. Aurora kinase A in gastrointestinal cancers: time to target. Mol Cancer. 2015;14:106. https://doi.org/10.1186/s12943-015-0375-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gessner R, Tauber R. Intestinal cell adhesion molecules. Liver-intestine cadherin. Ann N Y Acad Sci. 2000;915:136–43. https://doi.org/10.1111/j.1749-6632.2000.tb05236.x.

    Article  CAS  PubMed  Google Scholar 

  73. Grotzinger C, Kneifel J, Patschan D, Schnoy N, Anagnostopoulos I, et al. LI-cadherin: a marker of gastric metaplasia and neoplasia. Gut. 2001;49:73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ito R, Oue N, Yoshida K, Kunimitsu K, Nakayama H, Nakachi K, Yasui W. Clinicopathological significant and prognostic influence of cadherin-17 expression in gastric cancer. J Pathol. 2005;205(5):615–22. https://doi.org/10.1007/s00428-005-0015-2.

    Article  CAS  Google Scholar 

  75. Sakamoto N, Oue N, Sentani K, et al. Liver-intestine cadherin induction by epidermal growth factor receptor is associated with intestinal differentiation of gastric cancer. Cancer Sci. 2012;103:1744–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oue N, Sentani K, Sakamoto N, Yasui W. Clinicopathologic and molecular characteristics of gastric cancer showing gastric and intestinal mucin phenotype. Cancer Sci. 2015;106:951–8. https://doi.org/10.1111/cas.12706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li FY, Ren XB, Xu EP, Huang Q, Sheng HQ, Lv BJ, Lai MD. RegIV expression showing specificity to gastrointestinal tract and its potential role in diagnosing digestive tract neuroendocrine tumor. J Zhejiang Univ Sci B. 2010;11:258–66. https://doi.org/10.1631/jzus.B0900383.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Duan Y, Hu L, Liu B, Yu B, Li J, Yan M, Yu Y, Li C, Su L, Zhu Z, Xiang M, Liu B, Yang Q. Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV. Mol Cancer. 2014;13:127–39. https://doi.org/10.1186/1476-4598-13-127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bishnupuri KS, Luo Q, Murmu N, Houchen CW, Anant S, Dieckgraefe BK. Reg IV activates the epidermal growth factor receptor/Akt/AP-1 signaling pathway in colon adenocarcinomas. Gastroenterology. 2006;130:137–49. https://doi.org/10.1053/j.gastro.2005.10.001.

    Article  CAS  PubMed  Google Scholar 

  80. Nakata K, Nagai E, Ohuchida K, et al. REG4 is associated with carcinogenesis in the ‘intestinal’ pathway of intraductal papillary mucinous neoplasms. Mod Pathol. 2009;22:460–8. https://doi.org/10.1038/modpathol.2008.205.

    Article  CAS  PubMed  Google Scholar 

  81. Oue N, Sentani K, Noguchi T, et al. Serum olfactomedin 4 (GW112, hGC-1) in combination with Reg IV is a highly sensitive biomarker for gastric cancer patients. Int J Cancer. 2009;125:2383–92. https://doi.org/10.1002/ijc.24624.

    Article  CAS  PubMed  Google Scholar 

  82. Seko N, Oue N, Noguchi T, et al. Olfactomedin 4 (GW112, hGC-1) is an independent prognostic marker for survival in patients with colorectal cancer. Exp Ther Med. 2010;1:73–8. https://doi.org/10.3892/etm_00000013.

    Article  PubMed  PubMed Central  Google Scholar 

  83. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68:283–302. https://doi.org/10.1016/0092-8674(92)90471-N.

    Article  CAS  PubMed  Google Scholar 

  84. Yoshida H, et al. Deregulation of HOXA10 homeoglobal gene in endometrial carcinoma: role in epithelial-mesenchymal transition. Cancer Res. 2006;66:889–97. https://doi.org/10.1158/0008-5472.CAN-05-2828.

    Article  CAS  PubMed  Google Scholar 

  85. Sentani K, Oue N, Naito Y, et al. Upregulation of HOXA10 in gastric cancer with the intestinal mucin phenotype: reduction during tumor progression and favorable prognosis. Carcinogenesis. 2012;33(5):1081–8. https://doi.org/10.1093/carcin/bgs121.

    Article  CAS  PubMed  Google Scholar 

  86. Zöller M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 2009;9:40–55. https://doi.org/10.1038/nrc2543.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Canzonieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canzonieri, V. et al. (2019). Diagnostic, Prognostic, Predictive and Therapeutic Tissue Biomarkers in Gastric Cancer. In: Canzonieri, V., Giordano, A. (eds) Gastric Cancer In The Precision Medicine Era. Current Clinical Pathology. Humana, Cham. https://doi.org/10.1007/978-3-030-04861-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04861-7_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-04860-0

  • Online ISBN: 978-3-030-04861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics