Skip to main content

Noncoding RNA in Gastric Cancer with Potential Prognostic and Predictive Role

  • Chapter
  • First Online:
Gastric Cancer In The Precision Medicine Era

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Noncoding RNAs (ncRNAs) have attracted considerable attention in cancer pathology. ncRNAs are involved in different cellular processes such as development, proliferation, differentiation, and apoptosis. The dysregulation of ncRNAs has been reported in tumor initiation, progression, invasion, and metastasis in various cancers, including gastric cancer (GC). In the past few years, several studies have focused their attention on the understanding of these molecules, and several emerging ncRNAs could have a prognostic and predictive role in cancer. ncRNAs include mRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), which play critical roles in the tumorigenesis of GC. This chapter includes the latest information and findings related to ncRNAs and their possible therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anvara MS, Minuchehra Z, Shahlaeib M, Kheitana S. Gastric cancer biomarkers; A systems biology approach; 2405–5808/ © 2018 Published by Elsevier B.V. https://doi.org/10.1016/j.bbrep.2018.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lv Z, Zhang Y, Yu X, Lin Y, Ge Y. The function of long non-coding RNA MT1JP in the development and progression of gastric cancer. Pathol Res Pract. 2018;214(8):1218–23. https://doi.org/10.1016/j.prp.2018.07.001.

    Article  CAS  PubMed  Google Scholar 

  3. Yan X, Hu Z, Feng Y, Hu X, Yuan J, Zhao SD, Zhang Y, Yang L, Shan W, He Q, Fan L, Kandalaft LE, Tanyi JL, Li C, Yuan CX, Zhang D, Yuan H, Hua K, Lu Y, Katsaros D, Huang Q, Montone K, Fan Y, Coukos G, Boyd J, Sood AK, Rebbeck T, Mills GB, Dang CV, Zhang L. Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell. 2015;28:529–40. https://doi.org/10.1016/j.ccell.2015.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, Vazquez J, Valencia A, Tress ML. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet. 2014;23:5866–78. https://doi.org/10.1093/hmg/ddu309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. Available on: https://www.nature.com/articles/nature11247

    Article  Google Scholar 

  6. Bhan A, Mandal SS. Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem. 2014;9(9):1932–56. https://doi.org/10.1002/cmdc.201300534. Epub 2014 Mar 26.

    Article  CAS  PubMed  Google Scholar 

  7. Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine. Science. 2008;319:1787–9. https://doi.org/10.1126/science.1155472.

    Article  CAS  PubMed  Google Scholar 

  8. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–39. https://doi.org/10.1002/path.2638.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao J, Liu Y, Huang G, et al. Long non-coding RNAs in gastric cancer: versatile mechanisms and potential for clinical translation. Am J Cancer Res. 2015;5(3):907–27. Available on: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449426/#__ffn_sectitle

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839(11):1097–109. https://doi.org/10.1016/j.bbagrm.2014.08.012. Epub 2014 Aug 23

    Article  CAS  PubMed  Google Scholar 

  11. Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 2013;91:431–7. https://doi.org/10.1007/s00109-013-1020-6.

    Article  CAS  Google Scholar 

  12. Li PF, Chen SC, Xia T, Jiang XM, Shao YF, Xiao BX, Guo JM. Non-coding RNAs and gastric cancer. World J Gastroenterol. 2014;20:5411–9. https://doi.org/10.3748/wjg.v20.i18.5411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Place RF, Noonan EJ. Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones. 2014;19:159–72. https://doi.org/10.1007/s12192-013-0456-5.

    Article  CAS  PubMed  Google Scholar 

  14. Gomes AQ, Nolasco S, Soares H. Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci. 2013;14:16010–39. https://doi.org/10.3390/ijms140816010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang XM, Ma ZW, Wang Q, Wang JN, Yang JW, Li XD, Li H, Men TY. A new RNA-seq method to detect the transcription and non-coding RNA in prostate cancer. Pathol Oncol Res. 2014;20:43–50. https://doi.org/10.1007/s12253-013-9618-0.

    Article  CAS  PubMed  Google Scholar 

  16. Lv J, Liu H, Huang Z, Su J, He H, Xiu Y, Zhang Y, Wu Q. Long non-coding RNA identification over mouse brain development by integrative modeling of chromatin and genomic features. Nucleic Acids Res. 2013;41:10044–61. https://doi.org/10.1093/nar/gkt818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim VN, Nam JW. Genomics of microRNA. Trends Genet. 2006;22:165–73. https://doi.org/10.1016/j.tig.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  18. Singh TR, Gupta A, Suravajhala P. Challenges in the miRNA research. Int J Bioinforma Res Appl. 2013;9:576–83. https://doi.org/10.1504/IJBRA.2013.056620.

    Article  CAS  Google Scholar 

  19. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172:962–74. https://doi.org/10.1016/j.jconrel.2013.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9. https://doi.org/10.1038/nature01957.

    Article  CAS  PubMed  Google Scholar 

  21. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95–8. https://doi.org/10.1126/science.1090599.

    Article  CAS  PubMed  Google Scholar 

  22. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–86. https://doi.org/10.1016/j.ccr.2008.02.013.

    Article  CAS  PubMed  Google Scholar 

  23. Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer. 2010;9:16. https://doi.org/10.1186/1476-4598-9-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han TS, Hur K, Xu G, Choi B, Okugawa Y, Toiyama Y, Oshima H, Oshima M, Lee HJ, Kim VN, et al. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut. 2015;64:203–14. https://doi.org/10.1136/gutjnl-2013-306640.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou N, Qu Y, Xu C, Tang Y. Upregulation of microRNA-375 increases the cisplatin-sensitivity of human gastric cancer cells by regulating ERBB2. Exp Ther Med. 2016;11:625–30. https://doi.org/10.3892/etm.2015.2920.

    Article  CAS  PubMed  Google Scholar 

  26. Wu X, Tang H, Liu G, Wang H, Shu J, Sun F. miR-448 suppressed gastric cancer proliferation and invasion by regulating ADAM10. Tumour Biol. 2016. Epub ahead of print; https://doi.org/10.1007/s13277-016-4942-0.

    Article  CAS  PubMed  Google Scholar 

  27. Wu C, Zheng X, Li X, Fesler A, Hu W, Chen L, Xu B, Wang Q, Tong A, Burke S, et al. Reduction of gastric cancer proliferation and invasion by miR-15a mediated suppression of Bmi-1 translation. Oncotarget. 2016;7:14522–36. https://doi.org/10.18632/oncotarget.7392.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kang M, Ren MP, Zhao L, Li CP, Deng MM. miR-485-5p acts as a negative regulator in gastric cancer progression by targeting flotillin-1. Am J Transl Res. 2015;7:2212–22. Available on: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697701/

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin M, Shi C, Lin X, Pan J, Shen S, Xu Z, Chen Q. sMicroRNA-1290 inhibits cells proliferation and migration by targeting FOXA1 in gastric cancer cells. Gene. 2016;582:137–42. https://doi.org/10.1016/j.gene.2016.02.001.

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Dong G, Wang B, Gao W, Yang Q. miR-543 promotes gastric cancer cell proliferation by targeting SIRT1. Biochem Biophys Res Commun. 2016;469:15–21. https://doi.org/10.1016/j.bbrc.2015.11.062.

    Article  CAS  PubMed  Google Scholar 

  31. Bolha L, Ravnik-Glavač M, Glavač D. Long Noncoding RNAs as Biomarkers in Cancer. Dis Markers. 2017;2017, 7243968:14. https://doi.org/10.1155/2017/7243968

    Article  Google Scholar 

  32. Wang Y, Liu X, Zhang H, et al. Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting gamma-synuclein. Neoplasia. 2014;16(12):1094–106. https://doi.org/10.1016/j.neo.2014.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011 Apr 21;30(16):1956–62. https://doi.org/10.1038/onc.2010.568.

    Article  CAS  PubMed  Google Scholar 

  34. Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F, Gielen S, Schuler G, Gäbel G, Bergert H, Bechmann I, Stadler PF, Thiery J, Teupser D. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9(7):e1003588. https://doi.org/10.1371/journal.pgen.1003588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang EB, Kong R, Yin DD, et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget. 2014;5(8):2276–92. https://doi.org/10.18632/oncotarget.1902.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang ZX, Liu ZQ, Jiang B, et al. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-kappaB1. Biochem Biophys Res Commun. 2015;465(2):225–31. https://doi.org/10.1016/j.bbrc.2015.07.158.

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Zhang L, Zhang Y, et al. Increased expression of LncRNA BANCR is associated with clinical progression and poor prognosis in gastric cancer. Biomed Pharmacother. 2015;72:109–12. https://doi.org/10.1016/j.biopha.2015.04.007.

    Article  CAS  PubMed  Google Scholar 

  38. Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, et al. Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer. 2012;130(7):1598–606. https://doi.org/10.1002/ijc.26170.

    Article  CAS  PubMed  Google Scholar 

  39. Yang F, Xue X, Bi J, et al. Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol. 2013;139(3):437–45. https://doi.org/10.1007/s00432-012-1324-x.

    Article  CAS  PubMed  Google Scholar 

  40. Shen W, Yuan Y, Zhao M, Li J, Xu J, Lou G, Zheng J, Bu S, Guo J, Xi Y. Novel long non-coding RNA GACAT3 promotes gastric cancer cell proliferation through the IL-6/STAT3 signaling pathway. Tumour Biol. 2016;37(11):14895–902. https://doi.org/10.1007/s13277-016-5372-8.

    Article  CAS  PubMed  Google Scholar 

  41. Zhuang M, Gao W, Xu J, et al. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem Biophys Res Commun. 2014;448(3):315–22. https://doi.org/10.1016/j.bbrc.2013.12.126.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang EB, Han L, Yin DD, et al. c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol. 2014;31(5):914. https://doi.org/10.1007/s12032-014-0914-7.

    Article  CAS  PubMed  Google Scholar 

  43. Yang F, Bi J, Xue X, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J. 2012;279(17):3159–65. https://doi.org/10.1111/j.1742-4658.2012.08694.x.

    Article  CAS  PubMed  Google Scholar 

  44. Dugimont T, Montpellier C, Adriaenssens E, et al. The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene. 1998;16(18):2395–401. https://doi.org/10.1038/sj.onc.1201742.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Ma M, Liu W, et al. Enhanced expression of long noncoding RNA CARLo-5 is associated with the development of gastric cancer. Int J Clin Exp Pathol. 2014;7(12):8471–9. Available on: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314006/#__ffn_sectitle

    PubMed  PubMed Central  Google Scholar 

  46. Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007;13(3):313–6. https://doi.org/10.1261/rna.351707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo J, Tang L, Zhang J, et al. Long non-coding RNA CARLo-5 is a negative prognostic factor and exhibits tumor pro-oncogenic activity in non-small cell lung cancer. Tumour Biol. 2014;35(11):11541–9. https://doi.org/10.1007/s13277-014-2442-7.

    Article  CAS  PubMed  Google Scholar 

  48. Pan W, Liu L, Wei J, et al. A functional lncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility. Mol Carcinog. 2016;55:90–6. https://doi.org/10.1002/mc.22261.

    Article  CAS  PubMed  Google Scholar 

  49. Emadi-Andani E, Nikpour P, Emadi-Baygi M, et al. Association of HOTAIR expression in gastric carcinoma with invasion and distant metastasis. Adv Biomed Res. 2014;3:135. https://doi.org/10.4103/2277-9175.133278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Endo H, Shiroki T, Nakagawa T, et al. Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS One. 2013;8(10):e77070. https://doi.org/10.1371/journal.pone.0077070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu XH, Sun M, Nie FQ, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13:92. https://doi.org/10.1186/1476-4598-13-92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gutschner T, Hammerle M, Diederichs S. MALAT1 – a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 2013;91(7):791–801. https://doi.org/10.1007/s00109-013-1028-y.

    Article  CAS  Google Scholar 

  53. Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41. https://doi.org/10.1038/sj.onc.1206928.

    Article  CAS  PubMed  Google Scholar 

  54. Okugawa Y, Toiyama Y, Hur K, et al. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis. 2014;35(12):2731–9. https://doi.org/10.1093/carcin/bgu200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Su L, Chen X, et al. MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomed Pharmacother. 2014;68(5):557–64. https://doi.org/10.1016/j.biopha.2014.04.007.

    Article  CAS  PubMed  Google Scholar 

  56. Chalaris A, Garbers C, Rabe B, et al. The soluble Interleukin 6 receptor: generation and role in inflammation and cancer. Eur J Cell Biol. 2011;90(6–7):484–94. https://doi.org/10.1016/j.ejcb.2010.10.007.

    Article  CAS  PubMed  Google Scholar 

  57. Ding J, Li D, Gong M, et al. Expression and clinical significance of the long non-coding RNA PVT1 in human gastric cancer. Onco Targets Ther. 2014;7:1625–30. https://doi.org/10.2147/OTT.S68854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tseng YY, Moriarity BS, Gong W, et al. PVT1 dependence in cancer with MYC copy-number increase. Nature. 2014;512(7512):82–6. https://doi.org/10.1038/nature13311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kong R, Zhang EB, Yin DD, et al. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer. 2015;14:82. https://doi.org/10.1186/s12943-015-0355-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang XS, Zhang Z, Wang HC, et al. Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res. 2006;12(16):4851–8. https://doi.org/10.1158/1078-0432.

    Article  CAS  PubMed  Google Scholar 

  61. Zheng Q, Wu F, Dai WY, et al. Aberrant expression of UCA1 in gastric cancer and its clinical significance. Clin Transl Oncol. 2015;17(8):640–6. https://doi.org/10.1007/s12094-015-1290-2.

    Article  CAS  PubMed  Google Scholar 

  62. ShaoY YM, Jiang X, et al. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer. 2014;120(21):3320–8. https://doi.org/10.1002/cncr.28882.

    Article  CAS  Google Scholar 

  63. Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72. https://doi.org/10.1073/pnas.0904715106.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu Z, Shao Y, Tan L, et al. Clinical significance of the low expression of FER1L4 in gastric cancer patients. Tumour Biol. 2014;35(10):9613–7. https://doi.org/10.1007/s13277-014-2259-4.

    Article  CAS  PubMed  Google Scholar 

  65. Xia T, Liao Q, Jiang X, et al. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep. 2014;4:6088. https://doi.org/10.1038/srep06088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shao Y, Chen H, Jiang X, et al. Low expression of lncRNAHMlincRNA717 in human gastric cancer and its clinical significances. Tumour Biol. 2014;35(10):9591–5. https://doi.org/10.1007/s13277-014-2243-z.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang X, Rice K, Wang Y, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression and functions. Endocrinology. 2010;151(3):939–47. https://doi.org/10.1210/en.2009-0657.

    Article  CAS  PubMed  Google Scholar 

  68. Sun M, Xia R, Jin F, et al. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol. 2014;35:1065–73. https://doi.org/10.1007/s13277-013-1142-z.

    Article  CAS  PubMed  Google Scholar 

  69. Madamanchi NR, Hu ZY, Li F, et al. A noncoding RNA regulates human protease-activated receptor-1 gene during embryogenesis. Biochim Biophys Acta. 2002;1576(3):237–45. https://doi.org/10.1016/S0167-4781(02)00308-1.

    Article  CAS  PubMed  Google Scholar 

  70. Liu L, Yan B, Yang Z, et al. ncRuPAR inhibits gastric cancer progression by down-regulating protease-activated receptor-1. Tumour Biol. 2014;35(8):7821–9. https://doi.org/10.1007/s13277-014-2042-6.

    Article  CAS  PubMed  Google Scholar 

  71. Qi P, Xu MD, Shen XH, et al. Reciprocal repression between TUSC7 and miR-23b in gastric cancer. Int J Cancer. 2015;137(6):1269–78. https://doi.org/10.1002/ijc.29516.

    Article  CAS  PubMed  Google Scholar 

  72. Liu HS, Xiao HS. MicroRNAs as potential biomarkers for gastric cancer. World J Gastroenterol. 2014;20:12007–17. https://doi.org/10.3748/wjg.v20.i34.12007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J Gastroenterol. 2014;20:5694–9. https://doi.org/10.3748/wjg.v20.i19.5694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. He Y, Lin J, Kong D, Huang M, Xu C, Kim TK, Etheridge A, Luo Y, Ding Y, Wang K. Current state of circulating microRNAs as cancer biomarkers. Clin Chem. 2015 Sep;61(9):1138–55. https://doi.org/10.1373/clinchem.2015.241190.

    Article  CAS  PubMed  Google Scholar 

  75. Wang H, Wang L, Wu Z, Sun R, Jin H, Ma J, Liu L, Ling R, Yi J, Wang L, Bian J, Chen J, Li N, et al. Three dysregulated microRNAs in serum as novel biomarkers for gastric cancer screening. Med Oncol. 2014;31:298. https://doi.org/10.1007/s12032-014-0298-8.

    Article  CAS  PubMed  Google Scholar 

  76. Wu J, Li G, Yao Y, Wang Z, Sun W, Wang J. MicroRNA-421 is a new potential diagnosis biomarker with higher sensitivity and specificity than carcinoembryonic antigen and cancer antigen 125 in gastric cancer. Biomarkers. 2015;20:58–63. https://doi.org/10.3109/1354750X.2014.992812

    Article  CAS  PubMed  Google Scholar 

  77. Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W, Ma Y, Xiao H. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012;316:196–203. https://doi.org/10.1016/j.canlet.2011.10.034.

    Article  CAS  PubMed  Google Scholar 

  78. Li BS, Zhao YL, Guo G, Li W, Zhu ED, Luo X, Mao XH, Zou QM, Yu PW, Zuo QF, Li N, Tang B, Liu KY, et al. Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS One. 2012;7:e41629. https://doi.org/10.1371/journal.pone.0041629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou H, Xiao B, Zhou F, Deng H, Zhang X, Lou Y, Gong Z, Du C, Guo J. MiR-421 is a functional marker of circulating tumor cells in gastric cancer patients. Biomarkers. 2012;17:104–10. https://doi.org/10.3109/1354750X.2011.614961.

    Article  CAS  PubMed  Google Scholar 

  80. Jiang Z, Guo J, Xiao B, Miao Y, Huang R, Li D, Zhang Y. Increased expression of miR-421 in human gastric carcinoma and its clinical association. J Gastroenterol. 2010;45:17–23. https://doi.org/10.1007/s00535-009-0135-6.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang WH, Gui JH, Wang CZ, Chang Q, Xu SP, Cai CH, Li YN, Tian YP, Yan L, Wu B. The identification of miR-375 as a potential biomarker in distal gastric adenocarcinoma. Oncol Res. 2012;20:139–14. https://doi.org/10.1007/s10620-013-2970-9.

    Article  CAS  PubMed  Google Scholar 

  82. Xu Q, Dong QG, Sun LP, He CY, Yuan Y. Expression of serum miR-20a-5p, let-7a, and miR-320a and their correlations with pepsinogen in atrophic gastritis and gastric cancer: a case-control study. BMC Clin Pathol. 2013;13:11. https://doi.org/10.1186/1472-6890-13-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, Konishi H, Morimura R, Deguchi K, Fujiwara H, Okamoto K, Otsuji E. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102:1174–9. https://doi.org/10.1038/sj.bjc.6605608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huang YK, Yu JC. Circulating microRNAs and long noncoding RNAs in gastric cancer diagnosis: an update and review. World J Gastroenterol. 2015;21:9863–86. https://doi.org/10.3748/wjg.v21.i34.9863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tang R, Yang C, Ma X, Wang Y, Luo D, Huang C, Xu Z, Liu P, Yang L. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget. 2016;7:5972–84. https://doi.org/10.18632/oncotarget.6821. https://doi.org/10.3748/wjg.v21.i34.9863.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pichler M, Calin GA. MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer. 2015;113:569–73. https://doi.org/10.1038/bjc.2015.253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Riquelme I, Letelier P, Riffo-Campos AL, Brebi P, Roa JC. Emerging role of miRNAs in the drug resistance of gastric cancer. Int J Mol Sci. 2016;17:424. https://doi.org/10.3390/ijms17030424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang R, Ma J, Wu Q, Xia J, Miele L, Sarkar FH, Wang Z. Functional role of miR-34 family in human cancer. Curr Drug Targets. 2013;14:1185–91. https://doi.org/10.2174/13894501113149990191.

    Article  CAS  PubMed  Google Scholar 

  89. Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gulla A, Tagliaferri P, Tassone P, Caraglia M. Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids. 2014;3:e194. https://doi.org/10.1038/mtna.2014.47.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang DG, Zheng JN, Pei DS. P53/microRNA-34-induced metabolic regulation: new opportunities in anticancer therapy. Mol Cancer. 2014;13:115. https://doi.org/10.1186/1476-4598-13-115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tsai MM, Wang CS, Tsai CY, Huang HW, Chi HC, Lin YH, Lu PH, Lin KH. Potential diagnostic, prognostic and therapeutic targets of microRNAs in human gastric cancer. Int J Mol Sci. 2016;17 https://doi.org/10.3390/ijms17060945.

    Article  PubMed Central  Google Scholar 

  92. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro-Oncol. 2013;113(1):1–11. https://doi.org/10.1007/s11060-013-1084-8.

    Article  Google Scholar 

  93. Shi T, Gao G, Cao Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers. 2016, 9085195:10. https://doi.org/10.1155/2016/9085195

    Article  Google Scholar 

  94. Reis EM, Verjovski-Almeida S. Perspectives of long non-coding RNAs in cancer diagnostics. Front Genet. 2012;3(32):32. https://doi.org/10.3389/fgene.2012.00032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shao Y, Ye M, Jiang X, et al. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer. 2014;120(21):3320–8. https://doi.org/10.1002/cncr.28882.

    Article  CAS  PubMed  Google Scholar 

  96. Silva A, Bullock M, Calin G. The clinical relevance of long non-coding RNAs in cancer. Cancer. 2015;7(4):2169–82. https://doi.org/10.3390/cancers7040884.

    Article  CAS  Google Scholar 

  97. Zhang K, Shi H, Xi H, et al. Genome-wide lncRNA microarray profiling identifies novel circulating lncRNAs for detection of gastric cancer. Theranostics. 2017;7(1):213–27. https://doi.org/10.7150/thno.16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5:11516. https://doi.org/10.1038/srep11516.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Arita T, Ichikawa D, Konishi H, et al. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res. 2013;33(8):3185–93. Available on: http://ar.iiarjournals.org/content/33/8/3185.long

    CAS  PubMed  Google Scholar 

  100. Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science (New York, NY). 2008;319(5867):1244–7. https://doi.org/10.1126/science.1153124.

    Article  CAS  Google Scholar 

  101. Johnstone RM. Exosomes biological significance: a concise review. Blood Cells Mol Dis. 2006;36(2):315–21. https://doi.org/10.1016/j.bcmd.2005.12.001.

    Article  CAS  PubMed  Google Scholar 

  102. Huang X, Yuan T, Tschannen M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14(1):319. https://doi.org/10.1186/1471-2164-14-319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li Q, Shao Y, Zhang X, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 2015;36(3):2007–12. https://doi.org/10.1007/s13277-014-2807-y.

    Article  CAS  PubMed  Google Scholar 

  104. Ren S, Wang F, Shen J, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer (Oxford, England: 1990). 2013;49(13):2949–59. https://doi.org/10.1016/j.ejca.2013.04.026.

    Article  CAS  Google Scholar 

  105. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8. https://doi.org/10.1073/pnas.1019055108.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38(20):7248–59. https://doi.org/10.1093/nar/gkq601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flavio Rizzolio or Vincenzo Canzonieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, F., Rizzolio, F., Rizzardi, C., Perin, T., Canzonieri, V. (2019). Noncoding RNA in Gastric Cancer with Potential Prognostic and Predictive Role. In: Canzonieri, V., Giordano, A. (eds) Gastric Cancer In The Precision Medicine Era. Current Clinical Pathology. Humana, Cham. https://doi.org/10.1007/978-3-030-04861-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04861-7_11

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-04860-0

  • Online ISBN: 978-3-030-04861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics