Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 950))

  • 713 Accesses

Abstract

In this chapter we give explicit expression for the matrix elements of the finite-range interaction used in the second part of the book in the deformed harmonic-oscillator basis. The components of the interaction explicitly given are: the central (Gaussian) part, the spin-orbit part, a density-dependent contribution, and both the exact and Slater approximation to the Coulomb interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let us mention that using an axially deformed HO basis does not necessarily imply that nuclear shapes have to be restricted to axially symmetric ones. In fact, triaxial shapes can be described using such a basis by allowing a mixing of the orbital momentum projection quantum number Λ in the expansion of the HFB qp states, although such a mixing is convenient in practice only for relatively small triaxiality – which is generally the case along fission paths

References

  1. Skyrme, T.H.R.: Philos. Mag. 1, 1043 (1956)

    Article  ADS  Google Scholar 

  2. Skyrme, T.H.R.: Nucl. Phys. 9, 615 (1959)

    Article  Google Scholar 

  3. Gogny, D.: In: Proceedings of the International Conference on Self-Consistent Fields, Trieste, p. 333. North-Holland, Amsterdam (1975)

    Google Scholar 

  4. Dechargé, J., Gogny, D.: Phys. Rev. C 21, 1568 (1980)

    Article  ADS  Google Scholar 

  5. Stone, J.R., Reinhard, P.-G.: Prog. Part. Nucl. Phys. 58, 587 (2007)

    Article  ADS  Google Scholar 

  6. Bender, M., Heenen, P.-H., Reinhard, P.-G.: Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  7. Hilaire, S., Girod, M.: Eur. Phys. J. A 33, 237 (2007)

    Article  ADS  Google Scholar 

  8. Delaroche, J.-P., Girod, M., Libert, J., Goutte, H., Hilaire, S., Péru, S., Pillet, N., Bertsch, G.F.: Phys. Rev. 81, 014303 (2010)

    Article  Google Scholar 

  9. Brueckner, K.A.: Phys. Rev. 97, 1353 (1955)

    Article  ADS  Google Scholar 

  10. Day, D.A.: Rev. Mod. Phys. 39, 719 (1967)

    Article  ADS  Google Scholar 

  11. Köhler, H.S.: Phys. Rep. 18, 217 (1975)

    Article  ADS  Google Scholar 

  12. Côté, J., Pearson, J.M.: Nucl. Phys. A 304, 104 (1978)

    Article  ADS  Google Scholar 

  13. Kortelainen, M., McDonnell, J., Nazarewicz, W., Reinhard, P.-G., Sarich, J., Schunck, N., Stoitsov, M.V., Wild, S.M.: Phys. Rev. C 85, 024304 (2012)

    Article  ADS  Google Scholar 

  14. Chappert, F.: Ph.D. thesis, Université de Paris-Sud. Faculté des Sciences d’Orsay (Essonne) (2007)

    Google Scholar 

  15. Goriely, S., Hilaire, S., Girod, M., Péru, S.: Phys. Rev. Lett. 102, 242501 (2009)

    Article  ADS  Google Scholar 

  16. Péru, S., Martini, M.: Eur. Phys. J. A 50, 88 (2014)

    Article  ADS  Google Scholar 

  17. Younes, W.: Comput. Phys. Commun. 180, 1013 (2009)

    Article  ADS  Google Scholar 

  18. Schunck, N., Robledo, L.M.: arXiv:1511.07517v2, submitted to Rep. Prog. Phys. (2016)

    Google Scholar 

  19. Flocard, H., Quentin, P., Kerman, A.K., Vautherin, D.: Nucl. Phys. A 203, 433 (1973)

    Article  ADS  Google Scholar 

  20. Girod, M., Grammaticos, B.: Phys. Rev. C 27, 2317 (1983)

    Article  ADS  Google Scholar 

  21. Egido, J.L., Robledo, L.M., Chasman, R.R.: Phys. Lett. B 393, 13 (1997)

    Article  ADS  Google Scholar 

  22. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  23. Vautherin, D., Brink, D.M.: Phys. Rev. C 5, 626 (1972)

    Article  ADS  Google Scholar 

  24. Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Springer, Heidelberg (1980)

    Book  Google Scholar 

  25. Slater, J.C.: Phys. Rev. 81, 385 (1951)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This chapter was prepared by a contractor of the U.S. Government under contract number DE-AC52-06NA27344. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Younes, W., Gogny, D.M., Berger, JF. (2019). Matrix Elements of the Finite-Range Interaction. In: A Microscopic Theory of Fission Dynamics Based on the Generator Coordinate Method. Lecture Notes in Physics, vol 950. Springer, Cham. https://doi.org/10.1007/978-3-030-04424-4_2

Download citation

Publish with us

Policies and ethics