Skip to main content

Adaptive Dithering Using Curved Markov-Gaussian Noise in the Quantized Domain for Mapping SDR to HDR Image

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11010))

Abstract

High Dynamic Range (HDR) imaging is gaining increased attention due to its realistic content, for not only regular displays but also smartphones. Before sufficient HDR content is distributed, HDR visualization still relies mostly on converting Standard Dynamic Range (SDR) content. SDR images are often quantized, or bit depth reduced, before SDR-to-HDR conversion, e.g. for video transmission. Quantization can easily lead to banding artefacts. In some computing and/or memory I/O limited environment, the traditional solution using spatial neighborhood information is not feasible. Our method includes noise generation (offline) and noise injection (online), and operates on pixels of the quantized image. We vary the magnitude and structure of the noise pattern adaptively based on the luma of the quantized pixel and the slope of the inverse-tone mapping function. Subjective user evaluations confirm the superior performance of our technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There are no public HDR datasets containing banding.

  2. 2.

    At least four subjects should be included, per T-REC P.910 (https://www.itu.int/rec/T-REC-P.910/en).

References

  1. Miller, S., Nezamabadi, M., Daly, S.: Perceptual signal coding for more efficient usage of bit codes. In: Annual Technical Conference Exhibition, pp. 1–9. SMPTE (2012)

    Google Scholar 

  2. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, 2nd edn. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  3. Dufaux, F., Callet, P.L., Mantiuk, R., Mrak, M.: High Dynamic Range Video: From Acquisition, to Display and Applications. Academic Press, New York (2016)

    Google Scholar 

  4. Rempel, A.G., et al.: Ldr2Hdr: on-the-fly reverse tone mapping of legacy video and photographs. In: SIGGRAPH. ACM (2007)

    Google Scholar 

  5. Banterle, F., Ledda, P., Debattista, K., Chalmers, A.: Inverse tone mapping. In: 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, New York, NY, USA, pp. 349–356 (2006)

    Google Scholar 

  6. Kuo, P.-H., Tang, C.-S., Chien, S.-Y.: Content-adaptive inverse tone mapping. In: International Conference on Visual Communications and Image Processing (VCIP), pp. 1–6. IEEE (2012)

    Google Scholar 

  7. Chen, Q., Su, G.-M., Yin, P.: Near constant-time optimal piecewise LDR to HDR inverse tone mapping. In: SPIE 9404, 94 040O–11 (2015)

    Google Scholar 

  8. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson, London (2007)

    Google Scholar 

  9. Foley, H., Matlin, M.: Sensation and Perception, 5th edn. Psychology Press, London (2009)

    Google Scholar 

  10. Nguyen, T.Q., Kay, J., Pasquale, J.: Fast source-based dithering for networked digital video. In: High-Speed Networking and Multimedia Computing. SPIE (1994)

    Google Scholar 

  11. Bayer, B.E.: An optimum method for two-level rendition of continuous tone picture. In: International Conference on Communications, pp. (26–11)–(26–15). IEEE (1973)

    Google Scholar 

  12. Floyd, R., Steinberg, L.: An adaptive algorithm for spatial gray scale. In: Society for Information Display Symposium Digest of Technical Papers, pp. 36–37 (1975)

    Google Scholar 

  13. Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer Graphics: Principles and Practice, 2nd edn. Addison-Wesley, Boston (1990)

    MATH  Google Scholar 

  14. Jarvis, J.F., Judice, C.N., Ninke, W.H.: A survey of techniques for the display of continuous tone pictures on bilevel displays. Comput. Graph. Image Process. 5, 13–40 (1976)

    Article  Google Scholar 

  15. Judith, J.N., Jarvis, J.F., Ninke, W.: Using ordered dither to display continuous tone pictures on an AC plasma panel. In: Proceedings of the Society for Information Display, Q4, pp. 161–169 (1976)

    Google Scholar 

  16. Heckbert, P.: Color image quantization for frame buffer display. Comput. Graph. 16(3), 297–307 (1982)

    Article  Google Scholar 

  17. Netravali, A., Haskell, B.G.: Digital Pictures: Representation and Compression. Plenum Press, New York (1988)

    Book  Google Scholar 

  18. Roberts, L.G.: Picture coding using pseudo-random noise. IRE Trans. Inf. Theory 8, 145–154 (1962)

    Article  Google Scholar 

  19. Stoffel, J.C., Moreland, J.F.: Survey of electronic techniques for pictorial image reproduction. IEEE Trans. on Commun. 29(12), 1898–1925 (1981)

    Article  Google Scholar 

  20. Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)

    Google Scholar 

  21. Ulichney, R.: Video rendering. Digit. Tech. J. 5(2), 9–18 (1993)

    Google Scholar 

  22. Su, G.-M., Chen, T., Yin, P., Qu, S.: Guided post-prediction filtering in layered VDR coding. U.S. Patent 8,897,581 B2 (2014)

    Google Scholar 

  23. Su, G.-M., Qu, S., Daly, S.: Adaptive false contouring prevention in layered coding of images with extended dynamic range. U.S. Patent 8,873,877 B2 (2014)

    Google Scholar 

  24. Daly, S.J., Feng, X.: Decontouring: prevention and removal of false contour artifacts. In: Proceedings of SPIE, vol. 5292, pp. 130–149. SPIE (2004)

    Google Scholar 

  25. Lee, J.W., Lim, B.R., Park, R.-H., Kim, J.-S., Ahn, W.: Two-stage false contour detection using directional contrast and its application to adaptive false contour reduction. IEEE Trans. Consum. Electron. 52(1), 179–188 (2006)

    Google Scholar 

  26. Bhagavathy, S., Llach, J., Zhai, J.: Multi-scale probabilistic dithering for suppressing banding artifacts in digital images. In: International Conference on Image Processing, pp. IV-397–IV-400. IEEE (2007)

    Google Scholar 

  27. Huang, Q., Kim, H.Y., Tsai, W.J., Jeong, S.Y., Choi, J.S., Kuo, C.C.J.: Understanding and removal of false contour in HEVC compressed images. IEEE Trans. Circuits Syst. Video Technol. 99, 1 (2016)

    Google Scholar 

  28. Mantiuk, R., Myszkowski, K., Seidel, H.-P.: A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. 3(3), 286–308 (2006)

    Article  Google Scholar 

  29. Miller, S.: 2017 Update on High Dynamic Range Television. SMPTE Motion Imaging J. 126(7), 94–96 (2017)

    Article  Google Scholar 

  30. Song, Q., Su, G.M., Cosman, P.: Hardware-efficient debanding and visual enhancement filter for inverse tone mapped high dynamic range images and videos. In: International Conference on Image Processing. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhayan Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, S., Su, GM., Cheng, I. (2018). Adaptive Dithering Using Curved Markov-Gaussian Noise in the Quantized Domain for Mapping SDR to HDR Image. In: Basu, A., Berretti, S. (eds) Smart Multimedia. ICSM 2018. Lecture Notes in Computer Science(), vol 11010. Springer, Cham. https://doi.org/10.1007/978-3-030-04375-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04375-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04374-2

  • Online ISBN: 978-3-030-04375-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics