Skip to main content

Role of Heat Shock Protein 90 in Regulating Downstream Signal Transduction Cascades

  • Chapter
  • First Online:
  • 581 Accesses

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

Abstract

Heat shock protein 90 (Hsp90) regulates a broad swathe of proteins critical for normal and pathological cell function. One major class of regulated proteins are signal transduction molecules, such as the Mitogen Activated Protein Kinases (MAPK), G Protein Coupled Receptor (GPCR) regulatory kinases, and similar. Hsp90 regulates these signaling proteins by promoting proper folding and protein stability, however, Hsp90 also regulates signaling activation and association/targeting of mature proteins during the course of acute signal transduction. As these signaling proteins are ubiquitously expressed in most cells and are downstream of numerous different receptor systems, Hsp90 regulation of signaling proteins is strongly and broadly impactful. In this chapter, we will discuss the main themes of signaling protein regulation by Hsp90, and highlight several crucial signaling protein families. We will discuss the impact of Hsp90 on signaling downstream of multiple receptor systems, and subsequent effects on physiology and pathophysiology. We will also suggest means to manipulate these regulatory relationships to improve clinical therapy, and future directions for the field of Hsp90 signaling regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMPK:

adenosine monophosphate-activated protein kinase

CDK:

cyclin-dependent kinase

eNOS:

endothelial nitric oxide synthase

ERK:

extracellular signal-regulated kinase

FAK:

focal adhesion kinase

GPCR:

G protein coupled receptor

GRK:

G protein-coupled receptor kinases

GSK-3:

glycogen synthase kinase-3

Hsp90:

heat shock protein 90

IKK:

IκB kinase

JNK:

c-Jun N-terminal kinase

MAPK:

mitogen activated protein kinase

MOR:

Mu opioid receptor

PKA:

protein kinase A

PKC:

protein kinase C

RTK:

receptor tyrosine kinases

VEGFR:

vascular endothelial growth factor receptor

References

  • Abul-Husn NS, Annangudi SP, Ma’ayan A et al (2011) Chronic morphine alters the presynaptic protein profile: identification of novel molecular targets using proteomics and network analysis. PLoS One 6:e25535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adachi S, Yasuda I, Nakashima M et al (2010) HSP90 inhibitors induce desensitization of EGF receptor via p38 MAPK-mediated phosphorylation at Ser1046/1047 in human pancreatic cancer cells. Oncol Rep 23:1709–1714

    CAS  PubMed  Google Scholar 

  • Allonby O, El Zawily AM, Freywald T et al (2014) Ligand stimulation induces clathrin- and Rab5-dependent downregulation of the kinase-dead EphB6 receptor preceded by the disruption of EphB6-Hsp90 interaction. Cell Signal 26:2645–2657

    Article  CAS  PubMed  Google Scholar 

  • Amiri A, Noei F, Feroz T, Lee JM (2007) Geldanamycin anisimycins activate Rho and stimulate Rho- and ROCK-dependent actin stress fiber formation. Mol Cancer Res MCR 5:933–942

    Article  CAS  PubMed  Google Scholar 

  • Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA (2008) G alpha12 is targeted to the mitochondria and affects mitochondrial morphology and motility. FASEB J 22:2821–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansar S, Burlison JA, Hadden MK et al (2007) A non-toxic Hsp90 inhibitor protects neurons from Abeta-induced toxicity. Bioorg Med Chem Lett 17:1984–1990

    Article  CAS  PubMed  Google Scholar 

  • Anyika M, McMullen M, Forsberg LK, Dobrowsky RT, Blagg BS (2016) Development of noviomimetics as C-terminal Hsp90 inhibitors. ACS Med Chem Lett 7:67–71

    Article  CAS  PubMed  Google Scholar 

  • Assimon VA, Gillies AT, Rauch JN, Gestwicki JE (2013) Hsp70 protein complexes as drug targets. Curr Pharm Des 19:404–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assimon VA, Southworth DR, Gestwicki JE (2015) Specific binding of tetratricopeptide repeat proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry 54:7120–7131

    Article  CAS  PubMed  Google Scholar 

  • Banz VM, Medova M, Keogh A et al (2009) Hsp90 transcriptionally and post-translationally regulates the expression of NDRG1 and maintains the stability of its modifying kinase GSK3beta. Biochim Biophys Acta 1793:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Bar JK, Lis-Nawara A, Grelewski P, Noga L, Grzebieniak Z, Jelen M (2017) The association between HSP90/topoisomerase I immunophenotype and the clinical features of colorectal cancers in respect to KRAS gene status. Anticancer Res 37:4953–4960

    CAS  PubMed  Google Scholar 

  • Benitez MJ, Sanchez-Ponce D, Garrido JJ, Wandosell F (2014) Hsp90 activity is necessary to acquire a proper neuronal polarization. Biochim Biophys Acta 1843:245–252

    Article  CAS  PubMed  Google Scholar 

  • Blessing NA, Kasturirangan S, Zink EM, Schroyer AL, Chadee DN (2017) Osmotic and heat stress-dependent regulation of MLK4beta and MLK3 by the CHIP E3 ligase in ovarian cancer cells. Cell Signal 39:66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozza G, Capitani M, Montanari P et al (2014) Role of ARF6, Rab11 and external Hsp90 in the trafficking and recycling of recombinant-soluble Neisseria meningitidis adhesin A (rNadA) in human epithelial cells. PLoS One 9:e110047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broemer M, Krappmann D, Scheidereit C (2004) Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene 23:5378–5386

    Article  CAS  PubMed  Google Scholar 

  • Burlison JA, Neckers L, Smith AB, Maxwell A, Blagg BS (2006) Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of hsp90. J Am Chem Soc 128:15529–15536

    Article  CAS  PubMed  Google Scholar 

  • Busconi L, Guan J, Denker BM (2000) Degradation of heterotrimeric Galpha(o) subunits via the proteosome pathway is induced by the hsp90-specific compound geldanamycin. J Biol Chem 275:1565–1569

    Article  CAS  PubMed  Google Scholar 

  • Cha B, Lim JW, Kim KH, Kim H (2010) HSP90beta interacts with Rac1 to activate NADPH oxidase in Helicobacter pylori-infected gastric epithelial cells. Int J Biochem Cell Biol 42:1455–1461

    Article  CAS  PubMed  Google Scholar 

  • Chaklader M, Das P, Pereira JA et al (2012) 17-AAG mediated targeting of Hsp90 limits tert activity in peritoneal sarcoma related malignant ascites by downregulating cyclin D1 during cell cycle entry. Exp Oncol 34:90–96

    CAS  PubMed  Google Scholar 

  • Chen CY, Balch WE (2006) The Hsp90 chaperone complex regulates GDI-dependent Rab recycling. Mol Biol Cell 17:3494–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9:401–410

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Sakisaka T, Balch WE (2005) Use of Hsp90 inhibitors to disrupt GDI-dependent Rab recycling. Methods Enzymol 403:339–347

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Sato PY, Chuprun JK et al (2013a) Prodeath signaling of G protein-coupled receptor kinase 2 in cardiac myocytes after ischemic stress occurs via extracellular signal-regulated kinase-dependent heat shock protein 90-mediated mitochondrial targeting. Circ Res 112:1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RH, Wislet-Gendebien S, Samuel F et al (2013b) Alpha-Synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. J Biol Chem 288:7438–7449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Bi A, Dong X et al (2014) Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages. Biochem Biophys Res Commun 443:326–332

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Wu CC, Gotlinger KH et al (2010) 20-hydroxy-5,8,11,14-eicosatetraenoic acid mediates endothelial dysfunction via IkappaB kinase-dependent endothelial nitric-oxide synthase uncoupling. J Pharmacol Exp Ther 332:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cissel DS, Beaven MA (2000) Disruption of Raf-1/heat shock protein 90 complex and Raf signaling by dexamethasone in mast cells. J Biol Chem 275:7066–7070

    Article  CAS  PubMed  Google Scholar 

  • Coaxum SD, Martin JL, Mestril R (2003) Overexpression of heat shock proteins differentially modulates protein kinase C expression in rat neonatal cardiomyocytes. Cell Stress Chaperones 8:297–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper LC, Prinsloo E, Edkins AL, Blatch GL (2011) Hsp90alpha/beta associates with the GSK3beta/axin1/phospho-beta-catenin complex in the human MCF-7 epithelial breast cancer model. Biochem Biophys Res Commun 413:550–554

    Article  CAS  PubMed  Google Scholar 

  • Crevecoeur J, Merville MP, Piette J, Gloire G (2008) Geldanamycin inhibits tyrosine phosphorylation-dependent NF-kappaB activation. Biochem Pharmacol 75:2183–2191

    Article  CAS  PubMed  Google Scholar 

  • Davis BJ, Xie Z, Viollet B, Zou MH (2006) Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 55:496–505

    Article  CAS  PubMed  Google Scholar 

  • Dey A, Cederbaum AI (2007) Geldanamycin, an inhibitor of Hsp90 increases cytochrome P450 2E1 mediated toxicity in HepG2 cells through sustained activation of the p38MAPK pathway. Arch Biochem Biophys 461:275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diedrich B, Rigbolt KT, Roring M et al (2017) Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. EMBO J 36:646–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou F, Yuan LD, Zhu JJ (2005) Heat shock protein 90 indirectly regulates ERK activity by affecting Raf protein metabolism. Acta Biochim Biophys Sin 37:501–505

    Article  CAS  PubMed  Google Scholar 

  • Echeverria PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6:e26044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimura N, Jitsuiki D, Maruhashi T et al (2012) Geranylgeranylacetone, heat shock protein 90/AMP-activated protein kinase/endothelial nitric oxide synthase/nitric oxide pathway, and endothelial function in humans. Arterioscler Thromb Vasc Biol 32:153–160

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Tokuda H, Kuroyanagi G et al (2017) HSP90 inhibitors potentiate PGF2alpha-induced IL-6 synthesis via p38 MAP kinase in osteoblasts. PLoS One 12:e0177878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamboni F, Escobar GA, Moore EE et al (2014) Clathrin complexes with the inhibitor kappa B kinase signalosome: imaging the interactome. Physiol Rep 2:e12035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georgakis GV, Li Y, Rassidakis GZ, Martinez-Valdez H, Medeiros LJ, Younes A (2006) Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin’s lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Clin Cancer Res 12:584–590

    Article  CAS  PubMed  Google Scholar 

  • Gibbs SJ, Barren B, Beck KE et al (2009) Hsp40 couples with the CSPalpha chaperone complex upon induction of the heat shock response. PLoS One 4:e4595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gopalakrishnan R, Matta H, Chaudhary PM (2013) A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP K13-induced NF-kappaB. Clin Cancer Res 19:5016–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould CM, Kannan N, Taylor SS, Newton AC (2009) The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail. J Biol Chem 284:4921–4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH (1999) p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19:1661–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2017) Molecular mechanisms of GPCR signaling: a structural perspective. Int J Mol Sci 18:E2519

    Article  PubMed  CAS  Google Scholar 

  • Haarberg HE, Paraiso KH, Wood E et al (2013) Inhibition of Wee1, AKT, and CDK4 underlies the efficacy of the HSP90 inhibitor XL888 in an in vivo model of NRAS-mutant melanoma. Mol Cancer Ther 12:901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallett ST, Pastok MW, Morgan RML et al (2017) Differential regulation of G1 CDK complexes by the Hsp90-Cdc37 chaperone system. Cell Rep 21:1386–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Qiao ZH, Cai J, Pierce W, He DC, Song ZH (2007) Involvement of the 90-kDa heat shock protein (Hsp-90) in CB2 cannabinoid receptor-mediated cell migration: a new role of Hsp-90 in migration signaling of a G protein-coupled receptor. Mol Pharmacol 72:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Hendrix A, Maynard D, Pauwels P et al (2010) Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst 102:866–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertlein E, Wagner AJ, Jones J et al (2010) 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood 116:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinz M, Broemer M, Arslan SC et al (2007) Signal responsiveness of IkappaB kinases is determined by Cdc37-assisted transient interaction with Hsp90. J Biol Chem 282:32311–32319

    Article  CAS  PubMed  Google Scholar 

  • Inanobe A, Takahashi K, Katada T (1994) Association of the beta gamma subunits of trimeric GTP-binding proteins with 90-kDa heat shock protein, hsp90. J Biochem 115:486–492

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Wang Y, Li T et al (2011) Heat shock protein 90-mediated inactivation of nuclear factor-kappaB switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells. Mol Biol Cell 22:1167–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Li F, Shi K et al (2014) Involvement of p38 in signal switching from autophagy to apoptosis via the PERK/eIF2alpha/ATF4 axis in selenite-treated NB4 cells. Cell Death Dis 5:e1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Tian R, Pasculescu A et al (2016) Mutational analysis of glycogen synthase kinase 3beta protein kinase together with kinome-wide binding and stability studies suggests context-dependent recognition of kinases by the chaperone heat shock protein 90. Mol Cell Biol 36:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi AD, Dimitropoulou C, Thangjam G et al (2014) Heat shock protein 90 inhibitors prevent LPS-induced endothelial barrier dysfunction by disrupting RhoA signaling. Am J Respir Cell Mol Biol 50:170–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JM, Kim JS, Kim YJ et al (2008) Conjugated linoleic acids produced by Lactobacillus dissociates IKK-gamma and Hsp90 complex in Helicobacter pylori-infected gastric epithelial cells. Lab Invest J Tech Methods Pathol 88:541–552

    Article  CAS  Google Scholar 

  • Koshimizu TA, Tsuchiya H, Tsuda H et al (2010) Inhibition of heat shock protein 90 attenuates adenylate cyclase sensitization after chronic morphine treatment. Biochem Biophys Res Commun 392:603–607

    Article  CAS  PubMed  Google Scholar 

  • Le Boeuf F, Houle F, Huot J (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279:39175–39185

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Jang Y, Chung JH (2010) Heat shock protein 90 regulates IkappaB kinase complex and NF-kappaB activation in angiotensin II-induced cardiac cell hypertrophy. Exp Mol Med 42:703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MY, Sun KH, Chiang CP et al (2015) Nitric oxide suppresses LPS-induced inflammation in a mouse asthma model by attenuating the interaction of IKK and Hsp90. Exp Biol Med (Maywood) 240:498–507

    Article  CAS  Google Scholar 

  • Lee H, Saini N, Parris AB, Zhao M, Yang X (2017) Ganetespib induces G2/M cell cycle arrest and apoptosis in gastric cancer cells through targeting of receptor tyrosine kinase signaling. Int J Oncol 51:967–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lei W, Mullen N, McCarthy S et al (2017) Heat-shock protein 90 (Hsp90) promotes opioid-induced anti-nociception by an ERK mitogen-activated protein kinase (MAPK) mechanism in mouse brain. J Biol Chem 292:10414–10428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biomed J 36:106–117

    Article  PubMed  Google Scholar 

  • Lin P, Yi Y, Lu M et al (2015) Heat shock protein 90 inhibitor mycoepoxydiene modulates kinase signaling in cervical cancer cells and inhibits in-vivo tumor growth. Anti-Cancer Drugs 26:25–34

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang JP, Shi M et al (2009) Rab11a and HSP90 regulate recycling of extracellular alpha-synuclein. J Neurosci 29:1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu KS, Ding WC, Wang SX et al (2012) The heat shock protein 90 inhibitor SNX-2112 inhibits B16 melanoma cell growth in vitro and in vivo. Oncol Rep 27:1904–1910

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Wu A, Cui L et al (2014) Hepatitis B virus polymerase suppresses NF-kappaB signaling by inhibiting the activity of IKKs via interaction with Hsp90beta. PLoS One 9:e91658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu W, Vielhauer GA, Holzbeierlein JM et al (2015) KU675, a concomitant heat-shock protein inhibitor of Hsp90 and Hsc70 that manifests isoform selectivity for Hsp90alpha in prostate cancer cells. Mol Pharmacol 88:121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon V (2006) A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol Cell 24:627–633

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Ansar S, Michaelis ML, Blagg BS (2009) Neuroprotective activity and evaluation of Hsp90 inhibitors in an immortalized neuronal cell line. Bioorg Med Chem 17:1709–1715

    Article  CAS  PubMed  Google Scholar 

  • Lum MA, Balaburski GM, Murphy ME, Black AR, Black JD (2013) Heat shock proteins regulate activation-induced proteasomal degradation of the mature phosphorylated form of protein kinase C. J Biol Chem 288:27112–27127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Benovic JL (2003) G protein-coupled receptor kinase interaction with Hsp90 mediates kinase maturation. J Biol Chem 278:50908–50914

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Yan Z, Jin K et al (2017) Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (l-gamma-glutamylglutamine)-paclitaxel nanoconjugates. J Colloid Interface Sci 490:783–796

    Article  CAS  PubMed  Google Scholar 

  • Mahony D, Parry DA, Lees E (1998) Active cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells. Oncogene 16:603–611

    Article  CAS  PubMed  Google Scholar 

  • Manjarrez JR, Sun L, Prince T, Matts RL (2014) Hsp90-dependent assembly of the DBC2/RhoBTB2-Cullin3 E3-ligase complex. PLoS One 9:e90054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazalouskas MD, Godoy-Ruiz R, Weber DJ, Zimmer DB, Honkanen RE, Wadzinski BE (2014) Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5) extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1. J Biol Chem 289:4219–4232

    Article  CAS  PubMed  Google Scholar 

  • Mikolajczyk M, Nelson MA (2004) Regulation of stability of cyclin-dependent kinase CDK11p110 and a caspase-processed form, CDK11p46, by Hsp90. Biochem J 384:461–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra SJ, Ghosh S, Stothert AR, Dickey CA, Blagg BS (2017) Transformation of the non-selective aminocyclohexanol-based Hsp90 inhibitor into a Grp94-seletive scaffold. ACS Chem Biol 12:244–253

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Ghosh B, Gayen N, Roy J, Mandal AK (2016) Bipartite role of heat shock protein 90 (Hsp90) keeps CRAF kinase poised for activation. J Biol Chem 291:24579–24593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo Q, Zhang Y, Jin X et al (2016) Geldanamycin, an inhibitor of Hsp90, increases paclitaxel-mediated toxicity in ovarian cancer cells through sustained activation of the p38/H2AX axis. Tumour Biol J Int Soc Oncodev Biol Med 37:14745–14755

    Article  CAS  Google Scholar 

  • Mohan S, Konopinski R, Yan B, Centonze VE, Natarajan M (2009) High glucose-induced IKK-Hsp-90 interaction contributes to endothelial dysfunction. Am J Physiol Cell Physiol 296:C182–C192

    Article  CAS  PubMed  Google Scholar 

  • Montgomery ER, Temple BR, Peters KA et al (2014) Galpha12 structural determinants of Hsp90 interaction are necessary for serum response element-mediated transcriptional activation. Mol Pharmacol 85:586–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morceau F, Buck I, Dicato M, Diederich M (2008) Radicicol-mediated inhibition of Bcr-Abl in K562 cells induced p38-MAPK dependent erythroid differentiation and PU.1 down-regulation. BioFactors (Oxford, England) 34:313–329

    Article  Google Scholar 

  • Mott HR, Owen D (2015) Structures of Ras superfamily effector complexes: what have we learnt in two decades? Crit Rev Biochem Mol Biol 50:85–133

    Article  CAS  PubMed  Google Scholar 

  • Nagaraju GP, Mezina A, Shaib WL, Landry J, El-Rayes BF (2016) Targeting the Janus-activated kinase-2-STAT3 signalling pathway in pancreatic cancer using the HSP90 inhibitor ganetespib. Eur J Cancer (Oxford, England: 1990) 52:109–119

    Article  CAS  Google Scholar 

  • Nieto-Miguel T, Gajate C, Gonzalez-Camacho F, Mollinedo F (2008) Proapoptotic role of Hsp90 by its interaction with c-Jun N-terminal kinase in lipid rafts in edelfosine-mediated antileukemic therapy. Oncogene 27:1779–1787

    Article  CAS  PubMed  Google Scholar 

  • Odunuga OO, Longshaw VM, Blatch GL (2004) Hop: more than an Hsp70/Hsp90 adaptor protein. BioEssays News Rev Mol Cell Dev Biol 26:1058–1068

    Article  CAS  Google Scholar 

  • Ota A, Zhang J, Ping P, Han J, Wang Y (2010) Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Circ Res 106:1404–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai JT, Hsu CY, Hua KT et al (2015) NBM-T-BBX-OS01, semisynthesized from osthole, induced G1 growth arrest through HDAC6 inhibition in lung cancer cells. Molecules (Basel, Switzerland) 20:8000–8019

    Article  CAS  Google Scholar 

  • Park KS, Yang H, Choi J et al (2017) The HSP90 inhibitor, NVP-AUY922, attenuates intrinsic PI3K inhibitor resistance in KRAS-mutant non-small cell lung cancer. Cancer Lett 406:47–53

    Article  CAS  PubMed  Google Scholar 

  • Penela P (2016) Chapter three – ubiquitination and protein turnover of G-protein-coupled receptor kinases in GPCR signaling and cellular regulation. Prog Mol Biol Transl Sci 141:85–140

    Article  CAS  PubMed  Google Scholar 

  • Peti W, Page R (2013) Molecular basis of MAP kinase regulation. Protein Sci 22:1698–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittet JF, Lee H, Pespeni M, O’Mahony A, Roux J, Welch WJ (2005) Stress-induced inhibition of the NF-kappaB signaling pathway results from the insolubilization of the IkappaB kinase complex following its dissociation from heat shock protein 90. J Immunol (Baltimore, Md: 1950) 174:384–394

    Article  CAS  Google Scholar 

  • Qing G, Yan P, Xiao G (2006) Hsp90 inhibition results in autophagy-mediated proteasome-independent degradation of IkappaB kinase (IKK). Cell Res 16:895–901

    Article  CAS  PubMed  Google Scholar 

  • Raffaniello R, Fedorova D, Ip D, Rafiq S (2009) Hsp90 Co-localizes with Rab-GDI-1 and regulates agonist-induced amylase release in AR42J cells. Cell Physiol Biochem 24:369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice JW, Veal JM, Fadden RP et al (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58:3765–3775

    Article  CAS  PubMed  Google Scholar 

  • Sabath E, Negoro H, Beaudry S et al (2008) Galpha12 regulates protein interactions within the MDCK cell tight junction and inhibits tight-junction assembly. J Cell Sci 121:814–824

    Article  CAS  PubMed  Google Scholar 

  • Sakisaka T, Meerlo T, Matteson J, Plutner H, Balch WE (2002) Rab-alphaGDI activity is regulated by a Hsp90 chaperone complex. EMBO J 21:6125–6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salim S, Eikenburg DC (2007) Role of 90-kDa heat shock protein (Hsp 90) and protein degradation in regulating neuronal levels of G protein-coupled receptor kinase 3. J Pharmacol Exp Ther 320:1106–1112

    Article  CAS  PubMed  Google Scholar 

  • Samadi AK, Zhang X, Mukerji R, Donnelly AC, Blagg BS, Cohen MS (2011) A novel C-terminal HSP90 inhibitor KU135 induces apoptosis and cell cycle arrest in melanoma cells. Cancer Lett 312:158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte TW, Blagosklonny MV, Ingui C, Neckers L (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270:24585–24588

    Article  CAS  PubMed  Google Scholar 

  • Schulz E, Anter E, Zou MH, Keaney JF Jr (2005) Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase. Circulation 111:3473–3480

    Article  CAS  PubMed  Google Scholar 

  • Setalo G Jr, Singh M, Guan X, Toran-Allerand CD (2002) Estradiol-induced phosphorylation of ERK1/2 in explants of the mouse cerebral cortex: the roles of heat shock protein 90 (Hsp90) and MEK2. J Neurobiol 50:1–12

    Article  CAS  PubMed  Google Scholar 

  • Shapiro RS, Uppuluri P, Zaas AK et al (2009) Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol 19:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Zhang Z, Fang S et al (2009) Heat shock protein 90 (Hsp90) regulates the stability of transforming growth factor beta-activated kinase 1 (TAK1) in interleukin-1beta-induced cell signaling. Mol Immunol 46:541–550

    Article  CAS  PubMed  Google Scholar 

  • Shimp SK 3rd, Parson CD, Regna NL et al (2012) HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-kappaB pathways. Inflamm Res Off J Eur Histamine Res Soc 61:521–533

    CAS  Google Scholar 

  • Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20

    Article  CAS  PubMed  Google Scholar 

  • Sisinni L, Maddalena F, Condelli V et al (2017) TRAP1 controls cell cycle G2-M transition through the regulation of CDK1 and MAD2 expression/ubiquitination. J Pathol 243:123–134

    Article  CAS  PubMed  Google Scholar 

  • Stancato LF, Silverstein AM, Owens-Grillo JK, Chow YH, Jove R, Pratt WB (1997) The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. J Biol Chem 272:4013–4020

    Article  CAS  PubMed  Google Scholar 

  • Stetz G, Tse A, Verkhivker GM (2017) Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: differentiating kinase clients of the Hsp90-Cdc37 chaperone. PLoS One 12:e0186089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tatebe H, Shiozaki K (2003) Identification of Cdc37 as a novel regulator of the stress-responsive mitogen-activated protein kinase. Mol Cell Biol 23:5132–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thao NP, Chen L, Nakashima A et al (2007) RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. Plant Cell 19:4035–4045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson JW, Dave KR, Saul I, Narayanan SV, Perez-Pinzon MA (2013) Epsilon PKC increases brain mitochondrial SIRT1 protein levels via heat shock protein 90 following ischemic preconditioning in rats. PLoS One 8:e75753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban MJ, Li C, Yu C et al (2010) Inhibiting heat-shock protein 90 reverses sensory hypoalgesia in diabetic mice. ASN Neuro 2:e00040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaiskunaite R, Kozasa T, Voyno-Yasenetskaya TA (2001) Interaction between the G alpha subunit of heterotrimeric G(12) protein and Hsp90 is required for G alpha(12) signaling. J Biol Chem 276:46088–46093

    Article  CAS  PubMed  Google Scholar 

  • Verba KA, Wang RY, Arakawa A et al (2016) Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352:1542–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Violin JD, Crombie AL, Soergel DG, Lark MW (2014) Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci 35:308–316

    Article  CAS  PubMed  Google Scholar 

  • Waheed AA, Jones TL (2002) Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. J Biol Chem 277:32409–32412

    Article  CAS  PubMed  Google Scholar 

  • Walsby EJ, Lazenby M, Pepper CJ, Knapper S, Burnett AK (2013) The HSP90 inhibitor NVP-AUY922-AG inhibits the PI3K and IKK signalling pathways and synergizes with cytarabine in acute myeloid leukaemia cells. Br J Haematol 161:57–67

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Huang Y, Lam KS et al (2009) Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res 82:484–492

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Chen L, Ni Z et al (2014) Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells. Exp Cell Res 328:379–387

    Article  CAS  PubMed  Google Scholar 

  • Watanabe G, Behrns KE, Kim JS, Kim RD (2009) Heat shock protein 90 inhibition abrogates hepatocellular cancer growth through cdc2-mediated G2/M cell cycle arrest and apoptosis. Cancer Chemother Pharmacol 64:433–443

    Article  CAS  PubMed  Google Scholar 

  • Wen XR, Li C, Zong YY et al (2008) Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury. Neuroscience 156:483–497

    Article  CAS  PubMed  Google Scholar 

  • Willmer T, Contu L, Blatch GL, Edkins AL (2013) Knockdown of Hop downregulates RhoC expression, and decreases pseudopodia formation and migration in cancer cell lines. Cancer Lett 328:252–260

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Chen Y, Yang T, Gao Q, Yuan M, Ma L (2012) Targeted ubiquitination and degradation of G-protein-coupled receptor kinase 5 by the DDB1-CUL4 ubiquitin ligase complex. PLoS One 7:e43997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Peacock SO, Rao S, Lemmon SK, Burnstein KL (2013) Novel interaction between the co-chaperone Cdc37 and Rho GTPase exchange factor Vav3 promotes androgen receptor activity and prostate cancer growth. J Biol Chem 288:5463–5474

    Article  CAS  PubMed  Google Scholar 

  • Xie JY, Chew LA, Yang X et al (2016) Sustained relief of ongoing experimental neuropathic pain by a CRMP2 peptide aptamer with low abuse potential. Pain 157:2124–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaki H, Nakajima M, Shimotohno KW, Tanaka N (2011) Molecular basis for the actions of Hsp90 inhibitors and cancer therapy. J Antibiot 64:635–644

    Article  CAS  Google Scholar 

  • Yang Z, Sun W, Hu K (2012) Molecular mechanism underlying adenosine receptor-mediated mitochondrial targeting of protein kinase C. Biochim Biophys Acta 1823:950–958

    Article  CAS  PubMed  Google Scholar 

  • Yun TJ, Harning EK, Giza K et al (2011) EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity. J Immunol (Baltimore, Md: 1950) 186:563–575

    Article  CAS  Google Scholar 

  • Zhang H, Wu W, Du Y et al (2004) Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling. J Biol Chem 279:19457–19463

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Hamza A, Cao X et al (2008) A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 7:162–170

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yi Y, Guo Q et al (2012) Hsp90 interacts with AMPK and mediates acetyl-CoA carboxylase phosphorylation. Cell Signal 24:859–865

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li H, Huang Z et al (2016) Hypoxia attenuates Hsp90 inhibitor 17-DMAG-induced cyclin B1 accumulation in hepatocellular carcinoma cells. Cell Stress Chaperones 21:339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YS, Zhu TZ, Chen YW et al (2012) Beta-elemene inhibits Hsp90/Raf-1 molecular complex inducing apoptosis of glioblastoma cells. J Neuro-Oncol 107:307–314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge institutional support from the University of Arizona. We would also like to acknowledge our collaborator Dr. Brian Blagg from the University of Notre Dame for collaboration and valuable discussion on Hsp90 that contributed to the background of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Streicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, W., Duron, D., Stine, C., Streicher, J.M. (2019). Role of Heat Shock Protein 90 in Regulating Downstream Signal Transduction Cascades. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_9

Download citation

Publish with us

Policies and ethics