Skip to main content

Heat Shock Proteins and Alarmins in Autoimmunity

  • Chapter
  • First Online:
Heat Shock Proteins in Signaling Pathways

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

  • 552 Accesses

Abstract

Autoimmunity represents a diverse group of diseases, which demonstrate complex immuno-pathological responses. Heat shock proteins (Hsp) and danger signaling proteins such as HMGB1 and RAGE, grouped as alarmins play a crucial role in autoimmunity. These proteins are present at elevated levels in the patient’s plasma. Hsp bind and stabilize large protein complexes such as immune complexes (ICs), which are formed with autoantibodies generated against modified proteins and nucleic acids that are released from apoptotic and dead cells. Alarmins protect nucleic acids from degrading and enhance ICs capability to produce proinflammatory cytokines. Our current understanding of the role of Hsp in disease is largely based on the studies performed in innate immune cells. In autoimmunity, CD4+ T cells are a major contributor of pathology in inflamed tissue. Activation of CD4+ T cells by ICs triggers upregulation of a large set of genes that encode Hsp and also the HMGB1. HMGB1 associates with the low affinity Fc receptor, which trigger the release of proinflammatory cytokines from ICs ligation. This chapter will address our current understanding of the role and interplay of Hsp with other alarmins in autoimmune pathology. Additionally, it will also address the possible role of low affinity Fc receptors in triggering Hsp and alarmins mediated responses in autoimmune pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

allyamino-17-dimethoxygeldamycin

APC:

antigen presenting cells

BCR:

B cell receptor

CpG:

cytosine-phosphate- guanine

DAMPs:

damage-associated molecular patterns

DC:

dendrocyte

ER:

endoplasmic reticulum

Grp-78:

glucose-regulated protein 78

HMGB1:

high mobility group box 1

Hsp:

heat shock proteins

HSPB1:

heat shock protein family B member 1

ICs:

immune complexes

IFNs:

interferons

JIA:

juvenile idiopathic arthritis

LPS:

lipopolysaccharides

MAP:

mitogen activated protein kinase

MMP:

matrix metalloproteinase

PAMPs:

pathogen-associated molecular patterns

pDCs:

plasmacytoid dendritic cells

PRRs:

pattern recognition receptors

PS:

phosphotidyl serine

RA:

rheumatoid arthritis

RAGE:

receptor for advanced glycation end-products

SLE:

systemic lupus erythematosus

TCR:

T cell receptor

TE :

effector T cells

TLRs:

toll-like receptors

TRAF-6:

TNF receptor associated

References

  • Anderson SL, Shen T, Lou J, Xing L, Blachere NE, Srivastava PK, Rubin BY (1994) The endoplasmic reticular heat shock protein gp96 is transcriptionally upregulated in interferon-treated cells. J Exp Med 180:1565–1569

    Article  CAS  PubMed  Google Scholar 

  • Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162:3757–3760

    CAS  PubMed  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    CAS  PubMed  Google Scholar 

  • Barton GM, Kagan JC (2009) A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9:535–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7:49–56

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    CAS  PubMed  Google Scholar 

  • Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Haring HU, Schleicher E, Nawroth PP (2001) Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50:2792–2808

    Article  CAS  PubMed  Google Scholar 

  • Binder RJ, Anderson KM, Basu S, Srivastava PK (2000) Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol 165:6029–6035

    Article  CAS  PubMed  Google Scholar 

  • Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32:305–315

    Article  CAS  PubMed  Google Scholar 

  • Boog CJ, de Graeff-Meeder ER, Lucassen MA, van der Zee R, Voorhorst-Ogink MM, van Kooten PJ, Geuze HJ, van Eden W (1992) Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. J Exp Med 175:1805–1810

    Article  CAS  PubMed  Google Scholar 

  • Borges TJ, Wieten L, van Herwijnen MJ, Broere F, van der Zee R, Bonorino C, van Eden W (2012) The anti-inflammatory mechanisms of Hsp70. Front Immunol 3:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan AK (2017) FcgammaRIIIa signaling modulates endosomal TLR responses in human CD4+ T cells. J Immunol 198:4596–4606

    Article  CAS  PubMed  Google Scholar 

  • Chauhan AK, Moore TL (2011) T cell activation by terminal complex of complement and immune complexes. J Biol Chem 286:38627–38637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan AK, DiPaolo RJ, Moore TL (2012) Generation of CD4+ follicular helper T cells by complement and immune complexes. Arthritis Rheum 64:978

    Google Scholar 

  • Chauhan AK, Chen C, Moore TL, DiPaolo RJ (2015) Induced expression of FcgammaRIIIa (CD16a) on CD4+ T cells triggers generation of IFN-gammahigh subset. J Biol Chem 290:5127–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan AK, Moore TL, Bi Y, Chen C (2016) FcgammaRIIIa-Syk co-signal modulates CD4+ T-cell response and up-regulates toll-like receptor (TLR) expression. J Biol Chem 291:1368–1386

    Article  CAS  PubMed  Google Scholar 

  • Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–428

    Article  CAS  PubMed  Google Scholar 

  • Conroy SE, Faulds GB, Williams W, Latchman DS, Isenberg DA (1994) Detection of autoantibodies to the 90 kDa heat shock protein in systemic lupus erythematosus and other autoimmune diseases. Br J Rheumatol 33:923–926

    Article  CAS  PubMed  Google Scholar 

  • Davies KA, Hird V, Stewart S, Sivolapenko GB, Jose P, Epenetos AA, Walport MJ (1990) A study of in vivo immune complex formation and clearance in man. J Immunol 144:4613–4620

    CAS  PubMed  Google Scholar 

  • den Dunnen J, Vogelpoel LT, Wypych T, Muller FJ, de Boer L, Kuijpers TW, Zaat SA, Kapsenberg ML, de Jong EC (2012) IgG opsonization of bacteria promotes Th17 responses via synergy between TLRs and FcgammaRIIa in human dendritic cells. Blood 120:112–121

    Article  CAS  Google Scholar 

  • Dhillon VB, McCallum S, Norton P, Twomey BM, Erkeller-Yuksel F, Lydyard P, Isenberg DA, Latchman DS (1993) Differential heat shock protein overexpression and its clinical relevance in systemic lupus erythematosus. Ann Rheum Dis 52:436–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillon VB, McCallum S, Latchman DS, Isenberg DA (1994) Elevation of the 90 kDa heat-shock protein in specific subsets of systemic lupus erythematosus. Q J Med 87:215–222

    CAS  PubMed  Google Scholar 

  • Dodson LF, Boomer JS, Deppong CM, Shah DD, Sim J, Bricker TL, Russell JH, Green JM (2009) Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol 29:3710–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dustin ML (2002) The immunological synapse. Arthritis Res 4(Suppl 3):S119–S125

    Article  PubMed  PubMed Central  Google Scholar 

  • Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (2016) CD28 costimulation: from mechanism to therapy. Immunity 44:973–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    Article  CAS  PubMed  Google Scholar 

  • Gallo PM, Gallucci S (2013) The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol 4:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gelman AE, Zhang J, Choi Y, Turka LA (2004) Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol 172:6065–6073

    Article  CAS  PubMed  Google Scholar 

  • Giannini A, Bijlmakers MJ (2004) Regulation of the Src family kinase Lck by Hsp90 and ubiquitination. Mol Cell Biol 24:5667–5676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada T, Torikai M, Kuwazuru A, Tanaka M, Horai N, Fukuda T, Yamada S, Nagayama S, Hashiguchi K, Sunahara N, Fukuzaki K, Nagata R, Komiya S, Maruyama I, Fukuda T, Abeyama K (2008) Extracellular high mobility group box chromosomal protein 1 is a coupling factor for hypoxia and inflammation in arthritis. Arthritis Rheum 58:2675–2685

    Article  PubMed  Google Scholar 

  • Hamerman JA, Pottle J, Ni M, He Y, Zhang ZY, Buckner JH (2016) Negative regulation of TLR signaling in myeloid cells – implications for autoimmune diseases. Immunol Rev 269:212–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han JM, Kwon NH, Lee JY, Jeong SJ, Jung HJ, Kim HR, Li Z, Kim S (2010) Identification of gp96 as a novel target for treatment of autoimmune disease in mice. PLoS One 5:e9792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hightower LE, Hendershot LM (1997) Molecular chaperones and the heat shock response at Cold Spring Harbor. Cell Stress Chaperones 2:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann MA, Drury S, Hudson BI, Gleason MR, Qu W, Lu Y, Lalla E, Chitnis S, Monteiro J, Stickland MH, Bucciarelli LG, Moser B, Moxley G, Itescu S, Grant PJ, Gregersen PK, Stern DM, Schmidt AM (2002) RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun 3:123–135

    Article  CAS  PubMed  Google Scholar 

  • Huang QQ, Sobkoviak R, Jockheck-Clark AR, Shi B, Mandelin AM 2nd, Tak PP, Haines GK 3rd, Nicchitta CV, Pope RM (2009) Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J Immunol 182:4965–4973

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P, Bierhaus A, Lotze MT, Zeh HJ (2010) The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 17:666–676

    Article  CAS  PubMed  Google Scholar 

  • Kenderov A, Minkova V, Mihailova D, Giltiay N, Kyurkchiev S, Kehayov I, Kazatchkine M, Kaveri S, Pashov A (2002) Lupus-specific kidney deposits of HSP90 are associated with altered IgG idiotypic interactions of anti-HSP90 autoantibodies. Clin Exp Immunol 129:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Gautam PK, Tomar MS, Acharya A (2016) CD28-mediated T cell response is upregulated by exogenous application of autologous Hsp70-peptide complex in a tumor-bearing host. Immunol Res 64:313–323

    Article  CAS  PubMed  Google Scholar 

  • Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, de Silva U, Bailey SL, Witte T, Vyse TJ, Kere J, Pfeiffer C, Harvey S, Wong A, Koskenmies S, Hummel O, Rohde K, Schmidt RE, Dominiczak AF, Gahr M, Hollis T, Perrino FW, Lieberman J, Hubner N (2007) Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 39:1065–1067

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Li Z (2008) Endoplasmic reticulum HSP90b1 (gp96, grp94) optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin. Blood 112:1223–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Dai J, Zheng H, Stoilova D, Sun S, Li Z (2003) Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci U S A 100:15824–15829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Yang Y, Qiu Z, Staron M, Hong F, Li Y, Wu S, Li Y, Hao B, Bona R, Han D, Li Z (2010) Folding of toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 1:79

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Yu S, Xu W, Gao B, Xiong S (2015) HMGB1 promotes systemic lupus erythematosus by enhancing macrophage inflammatory response. J Immunol Res 2015:946748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manderson AP, Botto M, Walport MJ (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22:431–456

    Article  CAS  PubMed  Google Scholar 

  • Martin CA, Carsons SE, Kowalewski R, Bernstein D, Valentino M, Santiago-Schwarz F (2003) Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J Immunol 171:5736–5742

    Article  CAS  PubMed  Google Scholar 

  • Massa M, Passalia M, Manzoni SM, Campanelli R, Ciardelli L, Yung GP, Kamphuis S, Pistorio A, Meli V, Sette A, Prakken B, Martini A, Albani S (2007) Differential recognition of heat-shock protein dnaJ-derived epitopes by effector and Treg cells leads to modulation of inflammation in juvenile idiopathic arthritis. Arthritis Rheum 56:1648–1657

    Article  CAS  PubMed  Google Scholar 

  • Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills KH (2011) TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 11:807–822

    Article  CAS  PubMed  Google Scholar 

  • Moore TL, Osborn TG, Nesher G (1995) Immune complexes from sera of patients with juvenile rheumatoid arthritis reveal novel 40 and 60 kd bands. Clin Exp Rheumatol 13:667–672

    CAS  PubMed  Google Scholar 

  • Navaratnam M, Deshpande MS, Hariharan MJ, Zatechka DS Jr, Srikumaran S (2001) Heat shock protein-peptide complexes elicit cytotoxic T-lymphocyte and antibody responses specific for bovine herpesvirus 1. Vaccine 19:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Gehrmann M, Zlacka D, Sosna A, Vavrincova P, Multhoff G, Hromadnikova I (2006) Heat shock protein 70 membrane expression on fibroblast-like synovial cells derived from synovial tissue of patients with rheumatoid and juvenile idiopathic arthritis. Scand J Rheumatol 35:447–453

    Article  CAS  PubMed  Google Scholar 

  • Nieland TJ, Tan MC, Monne-van Muijen M, Koning F, Kruisbeek AM, van Bleek GM (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A 93:6135–6139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nienhuis HL, Westra J, Smit AJ, Limburg PC, Kallenberg CG, Bijl M (2009) AGE and their receptor RAGE in systemic autoimmune diseases: an inflammation propagating factor contributing to accelerated atherosclerosis. Autoimmunity 42:302–304

    Article  CAS  PubMed  Google Scholar 

  • Niu Q, Cai B, Huang ZC, Shi YY, Wang LL (2012) Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int 32:2731–2736

    Article  CAS  PubMed  Google Scholar 

  • Okuya K, Tamura Y, Saito K, Kutomi G, Torigoe T, Hirata K, Sato N (2010) Spatiotemporal regulation of heat shock protein 90-chaperoned self-DNA and CpG-oligodeoxynucleotide for type I IFN induction via targeting to static early endosome. J Immunol 184:7092–7099

    Article  CAS  PubMed  Google Scholar 

  • Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18:134–147

    Article  PubMed  CAS  Google Scholar 

  • Pelka K, Shibata T, Miyake K, Latz E (2016) Nucleic acid-sensing TLRs and autoimmunity: novel insights from structural and cell biology. Immunol Rev 269:60–75

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    Article  CAS  PubMed  Google Scholar 

  • Prakken AB, van Eden W, Rijkers GT, Kuis W, Toebes EA, de Graeff-Meeder ER, van der Zee R, Zegers BJ (1996) Autoreactivity to human heat-shock protein 60 predicts disease remission in oligoarticular juvenile rheumatoid arthritis. Arthritis Rheum 39:1826–1832

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Wang H, Yuan R, Li H, Ochani M, Ochani K, Rosas-Ballina M, Czura CJ, Huston JM, Miller E, Lin X, Sherry B, Kumar A, Larosa G, Newman W, Tracey KJ, Yang H (2006) Role of HMGB1 in apoptosis-mediated sepsis lethality. J Exp Med 203:1637–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp UK, Kaufmann SH (2004) DNA vaccination with gp96-peptide fusion proteins induces protection against an intracellular bacterial pathogen. Int Immunol 16:597–605

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Kukita K, Kutomi G, Okuya K, Asanuma H, Tabeya T, Naishiro Y, Yamamoto M, Takahashi H, Torigoe T, Nakai A, Shinomura Y, Hirata K, Sato N, Tamura Y (2015) Heat shock protein 90 associates with Toll-like receptors 7/9 and mediates self-nucleic acid recognition in SLE. Eur J Immunol 45:2028–2041

    Article  CAS  PubMed  Google Scholar 

  • Samali A, Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 3:228–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedlackova L, Sedlacek P, Hromadnikova I (2006) Peripheral blood mononuclear cell responses to heat shock proteins in patients undergoing stem cell transplantation. Pediatr Transplant 10:178–186

    Article  CAS  PubMed  Google Scholar 

  • Sedlackova L, Nguyen TT, Zlacka D, Sosna A, Hromadnikova I (2009) Cell surface and relative mRNA expression of heat shock protein 70 in human synovial cells. Autoimmunity 42:17–24

    Article  CAS  PubMed  Google Scholar 

  • Shrivastav M, Niewold TB (2013) Nucleic acid sensors and type I interferon production in systemic lupus erythematosus. Front Immunol 4:319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002a) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002b) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Udono H, Blachere NE, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39:93–98

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657–665

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Kang R, Xiao W, Jiang L, Liu M, Shi Y, Wang K, Wang H, Xiao X (2007) Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release. J Immunol 178:7376–7384

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Kang R, Livesey KM, Kroemer G, Billiar TR, Van Houten B, Zeh HJ 3rd, Lotze MT (2011) High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab 13:701–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    Article  CAS  PubMed  Google Scholar 

  • Travers TS, Harlow L, Rosas IO, Gochuico BR, Mikuls TR, Bhattacharya SK, Camacho CJ, Ascherman DP (2016) Extensive citrullination promotes immunogenicity of HSP90 through protein unfolding and exposure of cryptic epitopes. J Immunol 197:1926–1936

    Article  CAS  PubMed  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  CAS  PubMed  Google Scholar 

  • Van Eden W, Wick G, Albani S, Cohen I (2007) Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann N Y Acad Sci 1113:217–237

    Article  PubMed  CAS  Google Scholar 

  • van Egmond M, Vidarsson G, Bakema JE (2015) Cross-talk between pathogen recognizing Toll-like receptors and immunoglobulin Fc receptors in immunity. Immunol Rev 268:311–327

    Article  PubMed  CAS  Google Scholar 

  • Xanthoudakis S, Nicholson DW (2000) Heat-shock proteins as death determinants. Nat Cell Biol 2:E163–E165

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancois L, Li Z (2007) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, Lu B, Chavan S, Rosas-Ballina M, Al-Abed Y, Akira S, Bierhaus A, Erlandsson-Harris H, Andersson U, Tracey KJ (2010) A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 107:11942–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanin-Zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR (2006) Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J Clin Invest 116:2022–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zugel U, Sponaas AM, Neckermann J, Schoel B, Kaufmann SH (2001) gp96-peptide vaccination of mice against intracellular bacteria. Infect Immun 69:4164–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health Grant RO1 A1098114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, A.K. (2019). Heat Shock Proteins and Alarmins in Autoimmunity. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_7

Download citation

Publish with us

Policies and ethics