Skip to main content

Heat Shock Proteins in Neural Signaling: Implications in Health and Disease

  • Chapter
  • First Online:
Heat Shock Proteins in Signaling Pathways

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

Abstract

Much of the recent work has given insights into the non-canonical roles of heat shock proteins, strongly indicating a potential avenue for exploring the contribution of these proteins towards the normal physiology as well as various pathological conditions apart from hyperthermia-related stress. In this chapter, the role of intracellular as well as extracellular heat shock proteins in regulating various cellular signalling pathways has been discussed, with an emphasis on the biochemical and functional aspects of signalling in the central nervous system throughout various developmental stages. Further, their influence in regulating various pathological pathways including apoptosis and immune responses has been highlighted concerning different acute and chronic neurological disorders. Finally, the possibility of heat shock proteins as potential neuroprotective targets and the clinical relevance of their intracellular as well as extracellular forms has been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

apoptosis-inducing factor

Akt:

protein kinase B

APCs:

antigen presenting cells

CNS:

central nervous system

CTL:

cytotoxic T lymphocytes

eHSP:

extracellular/exogenous HSP

Hsc:

constitutive isoform of Hsp

Hsf1:

heat shock factor1

Hsp:

heat shock protein

HSP:

heat shock protein family

IKK:

IκB kinase

IL:

interleukin

JNK:

c-Jun N-terminal kinase

MAPK:

mitogen-activated protein kinase

MHC:

major histocompatibility complex

NFκB:

nuclear factor kappa-light-chain-enhancer of activated B cells

PrPC:

cellular prion protein

ROS:

reactive oxygen species

STI1:

stress-inducible protein 1

TGFβ:

tumor growth factor beta

TLRs:

toll-like receptors

TNFα:

tumor necrosis factor alpha

References

  • Alder GM, Austen BM, Bashford CL, Mehlert A, Pasternak CA (1990) Heat shock proteins induce pores in membranes. Biosci Rep 10:509–518

    Article  CAS  PubMed  Google Scholar 

  • Alexiou GA, Karamoutsios A, Lallas G et al (2014) Expression of heat shock proteins in brain tumors. Turk Neurosurg 24:745–749

    PubMed  Google Scholar 

  • Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony SG, Schipper HM, Tavares R et al (2003) Stress protein expression in the Alzheimer-diseased choroid plexus. J Alzheimers Dis 5:171–177

    Article  CAS  PubMed  Google Scholar 

  • Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275:30839–30843

    Article  CAS  PubMed  Google Scholar 

  • Armijo G, Okerblom J, Cauvi DM et al (2014) Interaction of heat shock protein 70 with membranes depends on the lipid environment. Cell Stress Chaperones 19:877–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asea A (2008) Hsp70: a chaperokine. Novartis Found Symp 291:173–179. discussion 79–83, 221–4

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  CAS  PubMed  Google Scholar 

  • Auluck PK, Chan HE, Trojanowski JQ, Lee VM-Y, Bonini NM (2002) Chaperone suppression of α-synuclein toxicity in a drosophila model for Parkinson’s disease. Science 295:865–868

    Google Scholar 

  • Bardsen K, Nilsen MM, Kvaloy JT, Norheim KB, Jonsson G, Omdal R (2016) Heat shock proteins and chronic fatigue in primary Sjogren’s syndrome. Innate Immun 22:162–167

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Srivastava PK (2000) Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones 5:443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Beall A, Bagwell D, Woodrum D et al (1999) The small heat shock-related protein, HSP20, is phosphorylated on serine 16 during cyclic nucleotide-dependent relaxation. J Biol Chem 274:11344–11351

    Article  CAS  PubMed  Google Scholar 

  • Bechtold DA, Brown IR (2000) Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia. Brain Res Mol Brain Res 75:309–320

    Article  CAS  PubMed  Google Scholar 

  • Bechtold DA, Rush SJ, Brown IR (2000) Localization of the heat-shock protein Hsp70 to the synapse following hyperthermic stress in the brain. J Neurochem 74:641–646

    Article  CAS  PubMed  Google Scholar 

  • Beere HM (2001) Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE: Signal Trans Knowl Environ 2001:re1

    CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  • Bobkova NV, Garbuz DG, Nesterova I et al (2014) Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer’s disease. J Alzheimer’s Dis: JAD 38:425–435

    Article  Google Scholar 

  • Bobkova NV, Evgen’ev M, Garbuz DG et al (2015) Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. Proc Natl Acad Sci U S A 112:16006–16011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ce P, Erkizan O, Gedizlioglu M (2011) Elevated HSP27 levels during attacks in patients with multiple sclerosis. Acta Neurol Scand 124:317–320

    Article  CAS  PubMed  Google Scholar 

  • Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiba S, Yokota S-i, Yonekura K et al (2006) Autoantibodies against HSP70 family proteins were detected in the cerebrospinal fluid from patients with multiple sclerosis. J Neurol Sci 241:39–43

    Article  CAS  PubMed  Google Scholar 

  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638

    Article  CAS  PubMed  Google Scholar 

  • Coelho V, Faria AMC (2012) HSP60: issues and insights on its therapeutic use as an immunoregulatory agent. Front Immunol 2:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Crowder RJ, Freeman RS (1998) Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci 18:2933–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutforth T, Rubin GM (1994) Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Da Rocha AB, Zanoni C, De Freitas GR et al (2005) Serum Hsp70 as an early predictor of fatal outcome after severe traumatic brain injury in males. J Neurotrauma 22:966–977

    Article  PubMed  Google Scholar 

  • Danzer KM, Ruf WP, Putcha P et al (2011) Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis GW (2013) Homeostatic signaling and the stabilization of neural function. Neuron 80:718–728

    Article  CAS  PubMed  Google Scholar 

  • Dawson-Scully K, Meldrum Robertson R (1998) Heat shock protects synaptic transmission in flight motor circuitry of locusts. Neuroreport 9:2589–2593

    Article  CAS  PubMed  Google Scholar 

  • De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the stress observation system: a form of communication during injury, infection, and cell damage. Cell Stress Chaperones 16:235–249

    Article  CAS  PubMed  Google Scholar 

  • Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL (2001) Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16:210–219

    Article  CAS  PubMed  Google Scholar 

  • D’Souza SM, Brown IR (1998) Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and non-neural tissues of the rat during postnatal development. Cell Stress Chaperones 3:188–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubey A, Prajapati K, Swamy M, Pachauri V (2015) Heat shock proteins: a therapeutic target worth to consider. Vet World 8:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi-Fakhari D, Wahlster L, McLean PJ (2011) Molecular chaperones in Parkinson’s disease–present and future. J Park Dis 1:299–320

    CAS  Google Scholar 

  • Ekimova IV, Nitsinskaya LE, Romanova IV, Pastukhov YF, Margulis BA, Guzhova IV (2010) Exogenous protein Hsp70/Hsc70 can penetrate into brain structures and attenuate the severity of chemically-induced seizures. J Neurochem 115:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Evdonin AL, Martynova MG, Bystrova OA, Guzhova IV, Margulis BA, Medvedeva ND (2006) The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules. Eur J Cell Biol 85:443–455

    Article  CAS  PubMed  Google Scholar 

  • Eves EM, Xiong W, Bellacosa A et al (1998) Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol Cell Biol 18:2143–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evgen’ev MB, Krasnov GS, Nesterova IV et al (2017) Molecular mechanisms underlying neuroprotective effect of intranasal administration of human Hsp70 in mouse model of Alzheimer’s disease. J Alzheimers Dis 59:1415–1426

    Article  PubMed  CAS  Google Scholar 

  • Fang H, Wu Y, Huang X et al (2011) Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J Biol Chem 286:30393–30400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ (1996) Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFκB activation. J Biol Chem 271:17724–17732

    Article  CAS  PubMed  Google Scholar 

  • Fiszer U, Fredrikson S, CzÅ‚onkowska A (1996) Humoral response to hsp 65 and hsp 70 in cerebrospinal fluid in Parkinson’s disease. J Neurol Sci 139:66–70

    Article  CAS  PubMed  Google Scholar 

  • Fleshner M, Johnson J (2005) Endogenous extra-cellular heat shock protein 72: releasing signal (s) and function. Int J Hyperth 21:457–471

    Article  CAS  Google Scholar 

  • Floto RA, MacAry PA, Boname JM et al (2006) Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science 314:454–458

    Article  CAS  PubMed  Google Scholar 

  • Gabai VL, Meriin AB, Mosser DD et al (1997) Hsp70 prevents activation of stress Kinases a novel pathway of cellular thermotolerance. J Biol Chem 272:18033–18037

    Article  CAS  PubMed  Google Scholar 

  • Galazka G, Stasiolek M, Walczak A et al (2006) Brain-derived heat shock protein 70-peptide complexes induce NK cell-dependent tolerance to experimental autoimmune encephalomyelitis. J Immunol 176:1588–1599

    Article  CAS  PubMed  Google Scholar 

  • Gao YL, Raine CS, Brosnan CF (1994) Humoral response to hsp 65 in multiple sclerosis and other neurologic conditions. Neurology 44:941–941

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Yechikov S, Vazquez AE, Chen D, Nie L (2013a) Distinct roles of molecular chaperones HSP90alpha and HSP90beta in the biogenesis of KCNQ4 channels. PLoS One 8:e57282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Yechikov S, Vazquez AE, Chen D, Nie L (2013b) Impaired surface expression and conductance of the KCNQ4 channel lead to sensorineural hearing loss. J Cell Mol Med 17:889–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifondorwa DJ, Robinson MB, Hayes CD et al (2007) Exogenous delivery of heat shock protein 70 increases lifespan in a mouse model of amyotrophic lateral sclerosis. J Neurosci 27:13173–13180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graner MW, Cumming RI, Bigner DD (2007) The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences. J Neurosci 27:11214–11227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzhova IV, Darieva ZA, Melo AR, Margulis BA (1997) Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914(12):66–73

    Article  CAS  PubMed  Google Scholar 

  • Hansson O, Nylandsted J, Castilho RF, Leist M, Jaattela M, Brundin P (2003) Overexpression of heat shock protein 70 in R6/2 Huntington’s disease mice has only modest effects on disease progression. Brain Res 970:47–57

    Article  CAS  PubMed  Google Scholar 

  • Harper SJ, Wilkie N (2003) MAPKs: new targets for neurodegeneration. Expert Opin Ther Targets 7:187–200

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto-Torii K, Torii M, Fujimoto M et al (2014) Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron 82:560–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecker JG, McGarvey M (2011) Heat shock proteins as biomarkers for the rapid detection of brain and spinal cord ischemia: a review and comparison to other methods of detection in thoracic aneurysm repair. Cell Stress Chaperones 16:119–131

    Article  CAS  PubMed  Google Scholar 

  • Henderson B (2010) Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 28:1–14

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Sharp A, Klockgether T, Gavrilyuk V, Feinstein DL (2000) The heat shock response inhibits NF-kappaB activation, nitric oxide synthase type 2 expression, and macrophage/microglial activation in brain. J Cereb Blood Flow Metab 20:800–811

    Article  CAS  PubMed  Google Scholar 

  • Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    Article  CAS  PubMed  Google Scholar 

  • Iwaki T, Wisniewski T, Iwaki A et al (1992) Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol 140:345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama R, Nakanishi S (1997) Helix-loop-helix factors in growth and differentiation of the vertebrate nervous system. Curr Opin Genet Dev 7:659–665

    Article  CAS  PubMed  Google Scholar 

  • Kakimura J, Kitamura Y, Takata K et al (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 16:601–603

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Karunanithi S, Brown IR (2015) Heat shock response and homeostatic plasticity. Front Cell Neurosci 9:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karunanithi S, Barclay JW, Robertson RM, Brown IR, Atwood HL (1999) Neuroprotection at Drosophila synapses conferred by prior heat shock. J Neurosci 19:4360–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karunanithi S, Barclay JW, Brown IR, Robertson RM, Atwood HL (2002) Enhancement of presynaptic performance in transgenic Drosophila overexpressing heat shock protein Hsp70. Synapse (New York, NY) 44:8–14

    Article  CAS  Google Scholar 

  • Kiang JG, Tsokos GC (1996) Cell signaling and heat shock protein expression. J Biomed Sci 3:379–388

    Article  CAS  Google Scholar 

  • Klucken J, Outeiro TF, Nguyen P, McLean PJ, Hyman BT (2006) Detection of novel intracellular α-synuclein oligomeric species by fluorescence lifetime imaging. FASEB J 20:2050–2057

    Article  CAS  PubMed  Google Scholar 

  • Krieger A, Radhakrishnan K, Pereverzev A et al (2006) The molecular chaperone hsp70 interacts with the cytosolic II-III loop of the Cav2.3 E-type voltage-gated Ca2+ channel. Cell Physiol Biochem 17:97–110

    Article  CAS  PubMed  Google Scholar 

  • Lackie RE, Maciejewski A, Ostapchenko VG et al (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazaro I, Oguiza A, Recio C et al (2015) Targeting HSP90 ameliorates nephropathy and atherosclerosis through suppression of NF-κB and STAT signaling pathways in diabetic mice. Diabetes 64:3600–3613

    Article  CAS  PubMed  Google Scholar 

  • Leverenz JB, Umar I, Wang Q et al (2007) Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol 17:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg I, Shorter J, Wiseman RL, Chiti F, Dickey CA, McLean PJ (2015) Chaperones in neurodegeneration. J Neurosci 35:13853–13859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindersson E, Beedholm R, Højrup P et al (2004) Proteasomal inhibition by α-synuclein filaments and oligomers. J Biol Chem 279:12924–12934

    Article  CAS  PubMed  Google Scholar 

  • Loones MT, Chang YH, Morange M (2000) The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones 5:291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez V, Cauvi DM, Arispe N, De Maio A (2016) Bacterial Hsp70 (DnaK) and mammalian Hsp70 interact differently with lipid membranes. Cell Stress Chaperones 21:609–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludlow RF, Verdonk ML, Saini HK, Tickle IJ, Jhoti H (2015) Detection of secondary binding sites in proteins using fragment screening. Proc Natl Acad Sci 112:15910–15915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maarouf CL, Andacht TM, Kokjohn TA et al (2009) Proteomic analysis of Alzheimer’s disease cerebrospinal fluid from neuropathologically diagnosed subjects. Curr Alzheimer Res 6:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciejewski A, Ostapchenko VG, Beraldo FH, Prado VF, Prado MA, Choy W-Y (2016) Domains of STIP1 responsible for regulating PrP C-dependent amyloid-β oligomer toxicity. Biochem J 473:2119–2130

    Article  CAS  PubMed  Google Scholar 

  • Mambula SS, Calderwood SK (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177:7849–7857

    Article  CAS  PubMed  Google Scholar 

  • Manaenko A, Fathali N, Chen H et al (2010) Heat shock protein 70 upregulation by geldanamycin reduces brain injury in a mouse model of intracerebral hemorrhage. Neurochem Int 57:844–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumori Y, Hong SM, Aoyama K et al (2005) Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25:899–910

    Article  CAS  PubMed  Google Scholar 

  • McLean PJ, Kawamata H, Shariff S et al (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of α-synuclein aggregation. J Neurochem 83:846–854

    Article  CAS  PubMed  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo A-P (1996) Small stress proteins as novel regulators of apoptosis heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    Article  CAS  PubMed  Google Scholar 

  • Mehlen P, Coronas V, Ljubic-Thibal V et al (1999) Small stress protein Hsp27 accumulation during dopamine-mediated differentiation of rat olfactory neurons counteracts apoptosis. Cell Death Differ 6:227–233

    Article  CAS  PubMed  Google Scholar 

  • Mishra PS, Dhull DK, Nalini A et al (2016) Astroglia acquires a toxic neuroinflammatory role in response to the cerebrospinal fluid from amyotrophic lateral sclerosis patients. J Neuroinflammation 13:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra P-S, Vijayalakshmi K, Nalini A et al (2017) Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J Neuroinflammation 14:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyazaki D, Nakamura A, Hineno A et al (2016) Elevation of serum heat-shock protein levels in amyotrophic lateral sclerosis. Neurol Sci 37:1277–1281

    Article  PubMed  Google Scholar 

  • Moulick K, Ahn JH, Zong H et al (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  CAS  PubMed  Google Scholar 

  • Mudaliar AV, Kashyap RS, Purohit HJ, Taori GM, Daginawala HF (2006) Detection of 65 kD heat shock protein in cerebrospinal fluid of tuberculous meningitis patients. BMC Neurol 6:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Multhoff G (2007) Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods 43:229–237

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashov AK, Haq IU, Hill C et al (2001) Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury. Mol Brain Res 93:199–208

    Article  CAS  PubMed  Google Scholar 

  • Naidoo N, Ferber M, Master M, Zhu Y, Pack AI (2008) Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J Neurosci 28:6539–6548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negulyaev YA, Vedernikova EA, Kinev AV, Voronin AP (1996) Exogenous heat shock protein hsp70 activates potassium channels in U937 cells. Biochim Biophys Acta 1282:156–162

    Article  PubMed  Google Scholar 

  • Nickel W, Seedorf M (2008) Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu Rev Cell Dev Biol 24:287–308

    Article  CAS  PubMed  Google Scholar 

  • Njemini R, Demanet C, Mets T (2004) Inflammatory status as an important determinant of heat shock protein 70 serum concentrations during aging. Biogerontology 5:31–38

    Article  CAS  PubMed  Google Scholar 

  • Novoselova TV, Margulis BA, Novoselov SS et al (2005) Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J Neurochem 94:597–606

    Article  CAS  PubMed  Google Scholar 

  • Nylandsted J, Gyrd-Hansen M, Danielewicz A et al (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Outeiro TF, Putcha P, Tetzlaff JE et al (2008) Formation of toxic oligomeric α-synuclein species in living cells. PLoS One 3:e1867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park HS, Lee JS, Huh SH, Seo JS, Choi EJ (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20:446–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel YJK, Payne Smith MD, de Belleroche J, Latchman DS (2005) Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD1-mutant-induced cell death in mammalian neuronal cells. Mol Brain Res 134:256–274

    Article  CAS  PubMed  Google Scholar 

  • Pawaria S, Binder RJ (2011) CD91-dependent programming of T helper cell responses following heat shock protein immunization. Nat Commun 2:521

    Article  PubMed  CAS  Google Scholar 

  • Philpott KL, McCarthy MJ, Klippel A, Rubin LL (1997) Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol 139:809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348:166–168

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar S, Kurien E, Gupta R, Zielinski S, Freedman M (1994) Heat shock protein immunoreactivity in CSF correlation with oligoclonal banding and demyelinating disease. Neurology 44:1644–1644

    Article  CAS  PubMed  Google Scholar 

  • Rabouille C, Malhotra V, Nickel W (2012) Diversity in unconventional protein secretion. J Cell Sci 125: 5251–5255. https://doi.org/10.1242/jcs.103630

    Article  CAS  PubMed  Google Scholar 

  • Ran R, Lu A, Zhang L et al (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKKγ and impairing NF-κB survival signaling. Genes Dev 18:1466–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rane MJ, Pan Y, Singh S et al (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278:27828–27835

    Article  CAS  PubMed  Google Scholar 

  • Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert J, Gantress J, Rau L, Bell A, Cohen N (2002) Minor histocompatibility antigen-specific MHC-restricted CD8 T cell responses elicited by heat shock proteins. J Immunol 168:1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Robinson MB, Tidwell JL, Gould T et al (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25:9735–9745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MB, Taylor AR, Gifondorwa DJ, Tytell M, Milligan CE (2008) Exogenous Hsc70, but not thermal preconditioning, confers protection to motoneurons subjected to oxidative stress. Dev Neurobiol 68:1–17

    Article  CAS  PubMed  Google Scholar 

  • Rodina A, Wang T, Yan P et al (2016) The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roffé M, Beraldo FH, Bester R et al (2010) Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proc Natl Acad Sci 107:13147–13152

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci 99:16412–16418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97:10832–10837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedlacek AL, Zhou YJ, Binder RJ (2017) The immunogenic HSP receptor CD91 is an essential mediator of tumor immunosurveillance. J Immunol 198:126.20–126.20

    Google Scholar 

  • Shaknovich R, Shue G, Kohtz DS (1992) Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol Cell Biol 12:5059–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard PW, Sun X, Khammash M, Giffard RG (2014) Overexpression of heat shock protein 72 attenuates NF-κB activation using a combination of regulatory mechanisms in microglia. PLoS Comput Biol 10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shevtsov MA, Nikolaev BP, Yakovleva LY et al (2014) Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats. Drug Des Devel Ther 8:639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sluchanko NN, Artemova NV, Sudnitsyna MV, Safenkova IV, Antson AA, Levitsky DI, Gusev NB (2015) Monomeric 14-3-3 Has a chaperone-like activity and is stabilized by phosphorylated HspB6. Biochemistry 51(31):6127–6138. https://doi.org/10.1021/bi300674e

    Article  CAS  PubMed  Google Scholar 

  • Sluchanko NN, Sudnitsyna MV, Seit-Nebi AS, Antson AA, Gusev NB (2011) Properties of the monomeric form of human 14-3-3ζ protein and its interaction with tau and HspB6. Biochemistry 50:9797–9808

    Article  CAS  PubMed  Google Scholar 

  • Sluchanko NN, Tugaeva KV, Greive SJ, Antson AA (2017) Chimeric 14-3-3 proteins for unraveling interactions with intrinsically disordered partners. Sci Rep 7:12014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  CAS  PubMed  Google Scholar 

  • Stetler RA, Gan Y, Zhang W et al (2010) Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 92:184–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313:307–313

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Han D, Sun B et al (2009) Heat stress preconditioning improves cognitive outcome after diffuse axonal injury in rats. J Neurotrauma 26:1695–1706

    Article  PubMed  Google Scholar 

  • Suzumura A (2013) Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci 14:16–20

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Kang R, Xiao W et al (2007) Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release. J Immunol 178:7376–7384

    Article  CAS  PubMed  Google Scholar 

  • Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  PubMed  CAS  Google Scholar 

  • Tidwell JL, Houenou LJ, Tytell M (2004) Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperones 9:88–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomcik M, Zerr P, Pitkowski J et al. (2013) Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Annals of the rheumatic diseases: annrheumdis-2012-203095

    Google Scholar 

  • Tonkiss J, Calderwood SK (2005) Regulation of heat shock gene transcription in neuronal cells. Int J Hyperth 21:433–444

    Article  CAS  Google Scholar 

  • Turturici G, Tinnirello R, Sconzo G et al (2014) Positive or negative involvement of heat shock proteins in multiple sclerosis pathogenesis: an overview. J Neuropathol Exp Neurol 73:1092–1106

    Article  CAS  PubMed  Google Scholar 

  • Tytell M (2016) Axonal maintenance, glia, exosomes, and heat shock proteins:5

    Article  Google Scholar 

  • Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164

    Article  CAS  PubMed  Google Scholar 

  • Uryu K, Richter-Landsberg C, Welch W et al (2006) Convergence of heat shock protein 90 with ubiquitin in filamentous α-synuclein inclusions of α-synucleinopathies. Am J Pathol 168:947–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentine WM (2010) 13.04 – degenerative and regenerative events in the central and peripheral nervous system*. In: McQueen CA (ed) Comprehensive toxicology, 2nd edn. Elsevier, Oxford, pp 39–58

    Chapter  Google Scholar 

  • Van Molle W, Wielockx B, Mahieu T et al (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16:685–695

    Article  PubMed  Google Scholar 

  • Vega VL, Rodriguez-Silva M, Frey T et al (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180:4299–4307

    Article  CAS  PubMed  Google Scholar 

  • Wan T, Zhou X, Chen G et al (2004) Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 103:1747–1754

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kelly CG, Karttunen JT et al (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15:971–983

    Article  CAS  PubMed  Google Scholar 

  • Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90. Ann N Y Acad Sci 1113:202–216

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wan T, Zhou X et al (2005) Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+ CTL response by dendritic cell vaccine. Cancer Res 65:4947–4954

    Article  CAS  PubMed  Google Scholar 

  • Wyttenbach A, Arrigo AP (2009) The role of heat shock proteins during neurodegeneration in Alzheimer’s, Parkinson’s and Huntington’s disease. Heat Shock Proteins Neural Cells:81–99. https://doi.org/10.1073/pnas.97.6.2898

    Article  CAS  Google Scholar 

  • Wyttenbach A, Carmichael J, Swartz J et al (2000) Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci U S A. 97(6):2898–2903

    Article  CAS  Google Scholar 

  • Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo A-P, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137–1151

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Mileva-Seitz V, Seroude L, Robertson RM (2007) Targeting HSP70 to motoneurons protects locomotor activity from hyperthermia in Drosophila. Dev Neurobiol 67:438–455

    Article  CAS  PubMed  Google Scholar 

  • Yokota S-i, Chiba S, Furuyama H, Fujii N (2010) Cerebrospinal fluids containing anti-HSP70 autoantibodies from multiple sclerosis patients augment HSP70-induced proinflammatory cytokine production in monocytic cells. J Neuroimmunol 218:129–133

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Beers DR, Appel SH (2013) Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J Neuroimmune Pharmacol 8:888–899

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28:53–63

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Simmons J, Timmermans P (2008) 152 POSTER prevention and treatment of bortezomib-induced peripheral neuropathy by the Hsp90 inhibitor tanespimycin (KOS-953) in the rat. Eur J Cancer Suppl 6:49

    Article  Google Scholar 

  • Zhou YJ, Binder RJ (2014) The heat shock protein-CD91 pathway mediates tumor immunosurveillance. Oncoimmunology 3:e28222

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Li SH, Li XJ (2001) Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation. J Biol Chem 276:48417–48424

    Article  CAS  PubMed  Google Scholar 

  • Zourlidou A, Gidalevitz T, Kristiansen M et al (2007) Hsp27 overexpression in the R6/2 mouse model of Huntington’s disease: chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet 16:1078–1090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank CERVO Brain Research Institute, Quebec city (Canada) and Department of Biotechnology, TERI School of Advanced Studies, New Delhi (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja-Shree Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, PS., Singh, A. (2019). Heat Shock Proteins in Neural Signaling: Implications in Health and Disease. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_22

Download citation

Publish with us

Policies and ethics