Skip to main content

Thiol-Based Redox Signaling: Impacts on Molecular Chaperones and Cellular Proteostasis

  • Chapter
  • First Online:
Book cover Heat Shock Proteins in Signaling Pathways

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

  • 599 Accesses

Abstract

Signaling through protein cysteine residues to regulate diverse biological processes is widely conserved from bacterial to human cells. Differential cysteine reactivity enables cells to sense and respond to perturbations in the cellular redox environment, which may impact protein structure and activity. This chapter will focus on how redox signaling regulates components of the protein quality control network to mitigate proteotoxic stress caused by redox active compounds. While specifics of redox-based activation of the endoplasmic reticulum unfolded protein response and the cytoplasmic heat shock and oxidative stress responses differ, the presence of regulatory proteins containing reactive cysteines is a common feature. Moreover, several protein chaperones are reversibly regulated via cysteine switches that govern their ability to protect or refold damaged polypeptides. These responses are biologically indispensable, given the propensity of dysregulated cells to produce endogenous reactive oxygen species and the prevalence of thiol-reactive xenobiotics in the external environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRD:

cysteine-rich domain

Cys:

cysteine

ER:

endoplasmic reticulum

HMW:

high molecular weight

HS:

heat shock

HSP:

heat shock protein

HSR:

heat shock response

LMW:

low molecular weight

NBD:

nucleotide binding domain

NEF:

nucleotide exchange factor

OS:

oxidative stress

OSR:

oxidative stress response

PDI:

protein disulfide isomerase

PQC:

protein quality control

Prx:

peroxiredoxin

ROS:

reactive oxygen species

SOH:

sulfenic acid

TF:

transcription factor

Ub:

ubiquitin

UPR:

unfolded protein response

References

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17:516–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsène F, Tomoyasu T (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  PubMed  Google Scholar 

  • Bankapalli K, Saladi SD, Awadia SS, Goswami AV, Samaddar M, D’Silva P (2015) Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. J Biol Chem 290:26491–26507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbirz S, Jakob U, Glocker MO (2000) Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone. J Biol Chem 275:18759–18766

    Article  CAS  PubMed  Google Scholar 

  • Beck R, Verrax J, Gonze T et al (2009) Hsp90 cleavage by an oxidative stress leads to its client proteins degradation and cancer cell death. Biochem Pharmacol 77:375–383

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo. Mol Cell Biol 19:8033–8041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Yu H, Mim C, Matouschek A (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 15:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braakman I, Helenius J, Helenius A (1992) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J 11:1717–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracher A, Verghese J (2015) The nucleotide exchange factors of Hsp70 molecular chaperones. Subcell Biochem 78:1–33

    Article  CAS  PubMed  Google Scholar 

  • Brandes N, Reichmann D, Tienson H, Leichert LI, Jakob U (2011) Using quantitative redox proteomics to dissect the yeast redoxome. J Biol Chem 286:41893–41903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandes N, Tienson H, Lindemann A, Vitvitsky V, Reichmann D, Banerjee R, Jakob U (2016) Time line of redox events in aging postmitotic cells. eLife 2:e00306

    Article  CAS  Google Scholar 

  • Cai H, Wang C-C, Tsou C-L (1994) Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J Biol Chem 269:24550–24552

    CAS  PubMed  Google Scholar 

  • Chalancon G, Madan Babu M (2011) Structure and evolution of transcriptional regulatory networks. In: Storz G, Hengee R (eds) Bacterial stress responses, 2nd edn. ASM Press, Washington, DC, pp 3–16

    Chapter  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  CAS  PubMed  Google Scholar 

  • de Jong WW, Leunissen JA, Voorter CE (1993) Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10:103–126

    PubMed  Google Scholar 

  • Delauney A, Pflieger D, Barrault M, Vinh J, Toledano MB (2002) A thiol peroxidase ss an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481

    Article  Google Scholar 

  • Delic M, Rebnegger C, Wanka F et al (2012) Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med 52:2000–2012

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A (2011) Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem Res Toxicol 24:434–450

    Article  CAS  PubMed  Google Scholar 

  • Frand AR, Kaiser CA (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1:161–170

    Article  CAS  PubMed  Google Scholar 

  • Freedman RB, Hirst TR, Tuite MF (1994) Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336

    Article  CAS  PubMed  Google Scholar 

  • Gardner BM, Walter P (2011) Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333:1891–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillece P, Luz JM, Lennarz WJ, de La Cruz FJ, Römisch K (1999) Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol 147:1443–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givol D, Goldberger RF, Anfinsen CB (1964) Oxidation and disulfide interchange in the reactivation of reduced ribonuclease. J Biol Chem 239:3114–3116

    CAS  Google Scholar 

  • Graf PCF, Martinez-Yamout M, VanHaerents S, Lilie H, Dyson HJ, Jakob U (2004) Activation of the redox-regulated chaperone Hsp33 by domain unfolding. J Biol Chem 279:20529–20538

    Article  CAS  PubMed  Google Scholar 

  • Graumann J, Lilie H, Tang X et al (2001) Activation of the redox-regulated molecular chaperone Hsp33 – a two-step mechanism. Structure 9:377–387

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4A resolution. Nature 386:463–471

    Article  CAS  PubMed  Google Scholar 

  • Grunwald MS, Pires AS, Zanotto-Filho A, Gasparotto J, Gelain DP, Demartini DR, Schöler CM, de Bittencourt PIH, Moreira JCF, Moreira JCF (2014) The oxidation of HSP70 is associated with functional impairment and lack of stimulatory capacity. Cell Stress Chaperones 19:913–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hageman J, van Waarde MAWH, Zylicz A, Walerych D, Kampinga HH (2011) The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem J 435:127–142

    Article  CAS  PubMed  Google Scholar 

  • Hahn J, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding HP, Zhang Y, Zeng H et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  CAS  PubMed  Google Scholar 

  • Harshman KD, Moye-Rowley WS, Parker CS (1988) Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell 53:321–330

    Article  CAS  PubMed  Google Scholar 

  • Haynes CM, Titus EA, Cooper AA (2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15:767–776

    Article  CAS  PubMed  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmann JD (2011) Regulation by alternative sigma factors. In: Storz G, Hengee R (eds) Bacterial stress responses, 2nd edn. ASM Press, Washington, DC, pp 31–43

    Chapter  Google Scholar 

  • Hetz C, Martinon F, Rodriguez D, Glimcher LH (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1219–1243

    Article  Google Scholar 

  • Hipp MS, Park SH, Hartl FU (2014) Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 24:506–514

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann JH, Linke K, Graf PCF, Lilie H, Jakob U (2004) Identification of a redox-regulated chaperone network. EMBO J 23:160–168

    Article  CAS  PubMed  Google Scholar 

  • Hughes KT, Mathee, Kalai (1998) The anti-sigma factors. Annu Rev Microbiol 52:231–286

    Article  CAS  PubMed  Google Scholar 

  • Hyslop PA, Hinshawz DB, Halsey WA et al (1988) Mechanisms of oxidant-mediated cell injury. J Biol Chem 263:1665–1675

    CAS  PubMed  Google Scholar 

  • Jacobson T, Navarrete C, Sharma SK et al (2012) Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. J Cell Sci 125:5073–5083

    Article  CAS  PubMed  Google Scholar 

  • Jacobson T, Priya S, Sharma SK et al (2017) Cadmium causes misfolding and aggregation of cytosolic proteins in yeast. Mol Cell Biol 37:e00490–e00416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahngen-Hodge J, Obin MS, Gong X et al (1997) Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem 272:28218–28226

    Article  CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  • Jakob U, Muse W, Eser M, Bardwell JCA (1999) Chaperone activity with a redox switch. Cell 96:341–352

    Article  CAS  PubMed  Google Scholar 

  • Jang HH, Lee KO, Chi YH et al (2004) Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117:625–635

    Article  CAS  PubMed  Google Scholar 

  • Kästle M, Reeg S, Rogowska-Wrzesinska A, Grune T (2012) Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress. Free Radic Biol Med 53:1468–1477

    Article  PubMed  CAS  Google Scholar 

  • Kelner MJ, Alexander NM (1985) Methylene blue directly oxidizes glutathione without the intermediate formation of hydrogen peroxide. J Biol Chem 260:15168–15171

    CAS  PubMed  Google Scholar 

  • Klappa P, Freedman RB, Zimmermann R (1995) Protein disulphide isomerase and a lumenal cyclophilin-type peptidyl prolyl cis-trans isomerase are in transient contact with secretory proteins during late stages of translocation. Eur J Biochem 232:755–764

    Article  CAS  PubMed  Google Scholar 

  • Knittler MR, Haas IG (1992) Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EMBO J 11:1573–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortemme T, Creighton TE (1995) Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J Mol Biol 253:799–812

    Article  CAS  PubMed  Google Scholar 

  • Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuge S, Toda T, Iizuka N, Nomoto A (1998) Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells 3:521–532

    Article  CAS  PubMed  Google Scholar 

  • Laboissiere MC, Sturley SL, Raines RT (1995) The essential function of protein-disulphide isomerase is to unscramble non-native disulphide bonds. J Biol Chem 270:28006–28009

    Article  CAS  PubMed  Google Scholar 

  • Le Moan N, Clement G, Le Maout S, Tacnet F, Toledano MB (2006) The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 281:10420–10430

    Article  PubMed  CAS  Google Scholar 

  • Lee S-J, Kim SJ, Kim I-K et al (2003) Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain. J Biol Chem 278:44552–44559

    Article  CAS  PubMed  Google Scholar 

  • Liu XD, Thiele DJ (1996) Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev 10:592–603

    Article  CAS  PubMed  Google Scholar 

  • Malki A, Kern R, Abdallah J, Richarme G (2003) Characterization of the Escherichia coli YedU protein as a molecular chaperone. Biochem Biophys Res Commun 301:430–436

    Article  CAS  PubMed  Google Scholar 

  • Marino SM, Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404:902–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marnett LJ, Riggins JN, West JD (2003) Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 111:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinat C, Shendelman S, Jonason A et al (2004) Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary Parkinsonism. PLoS Biol 2:e327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merksamer PI, Trusina A, Papa FR (2008) Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell 135:933–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meunier L, Usherwood Y-K, Chung KT, Hendershot LM (2002) A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 13:4456–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata Y, Rauch JN, Jinwal UK, Thompson AD, Srinivasan S, Dickey CA, Gestwicki JE (2012) Cysteine reactivity distinguishes redox sensing by the heat-inducible and constitutive forms of heat shock protein 70. Chem Biol 19:1391–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molteni SN, Fassio A, Ciriolo MR, Filomeni G, Pasqualetto E, Fagioli C, Sitia R (2004) Glutathione limits Ero1-dependent oxidation in the endoplasmic reticulum. J Biol Chem 279:32667–32673

    Article  CAS  PubMed  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori K, Ogawa N, Kawahara T, Yanagi H, Yura T (2000) mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proc Natl Acad Sci U S A 97:4660–4665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujacic M, Baneyx F (2006) Regulation of Escherichia coli hchA, a stress-inducible gene encoding molecular chaperone Hsp31. Mol Microbiol 60:1576–1589

    Article  CAS  PubMed  Google Scholar 

  • Mujacic M, Bader MW, Baneyx F (2004) Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions. Mol Microbiol 51:849–859

    Article  CAS  PubMed  Google Scholar 

  • Nardai G, Stadler K, Papp E, Korcsmáros T, Jakus J, Csermely P (2005) Diabetic changes in the redox status of the microsomal protein folding machinery. Biochem Biophys Res Commun 334:787–795

    Article  CAS  PubMed  Google Scholar 

  • Ng DT, Watowich SS, Lamb RA (1992) Analysis in vivo of GRP78-BiP/substrate interactions and their role in induction of the GRP78-BiP gene. Mol Biol Cell 3:143–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noiva R, Freedman RB, Lennarz WJ (1993) Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites. J Biol Chem 268:19210–19217

    CAS  PubMed  Google Scholar 

  • Pajares M, Jiménez-Moreno N, Dias IHK et al (2015) Redox control of protein degradation. Redox Biol 6:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrucelli L, Dickson D, Kehoe K et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714

    Article  CAS  PubMed  Google Scholar 

  • Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157

    Article  CAS  PubMed  Google Scholar 

  • Quigley PM, Korotkov K, Baneyx F, Hol WGJ (2004) A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function. Protein Sci 13:269–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335:637–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR (1999) Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 27:3821–3835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röhl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38:253–262

    Article  PubMed  CAS  Google Scholar 

  • Rüegsegger U, Leber JH, Walter P (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107:103–114

    Article  PubMed  Google Scholar 

  • Sánchez-Gómez FJ, Díez-Dacal B, Pajares M, Llorca O, Pérez-Sala D (2010) Cyclopentenone prostaglandins with dienone structure promote cross-linking of the chemoresistance-inducing enzyme glutathione transferase P1-1. Mol Pharmacol 78:723–733

    Article  PubMed  CAS  Google Scholar 

  • Sastry MSR, Quigley PM, Hol WGJ, Baneyx F (2004) The linker-loop region of Escherichia coli chaperone Hsp31 functions as a gate that modulates high-affinity substrate binding at elevated temperatures. Proc Natl Acad Sci U S A 101:8587–8592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder E, Ponting CP (1998) Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci 7:2465–2468

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Goloubinoff P, Christen P (2008) Heavy metal ions are potent inhibitors of protein folding. Biochem Biophys Res Commun 372:341–345

    Article  CAS  PubMed  Google Scholar 

  • Shen SC, Yang LY, Lin HY, Wu CY, Su TH, Chen YC (2008) Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As+ 3- and MMA+ 3-induced apoptosis through inhibition of telomerase activity via JNK activation. Toxicol Appl Pharmacol 229:239–251

    Article  CAS  PubMed  Google Scholar 

  • Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A (2004) DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2:e362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegenthaler KD, Pareja KA, Wang J, Sevier CS (2017) An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP. Elife 6:e24141

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva GM, Netto LES, Simões V et al (2012) Redox control of 20S proteasome gating. Antioxid Redox Signal 16:1183–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skoneczna A, Miciałkiewicz A, Skoneczny M (2007) Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species. Free Radic Biol Med 42:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Solís EJ, Pandey JP, Zheng X et al (2016) Defining the essential function of yeast Hsf1 reveals a compact transcriptional program for maintaining eukaryotic proteostasis. Mol Cell 63:60–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subedi KP, Choi D, Kim I, Min B, Park C (2011) Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol Microbiol 81:926–936

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama K, Izawa S, Inoue Y (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275:15535–15540

    Article  CAS  PubMed  Google Scholar 

  • Szabo A, Langer T, Schroder H, Flanagan J, Bukau B, Hartl FU (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci U S A 91:10345–10349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomol Ther 4:252–267

    Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  PubMed  Google Scholar 

  • Trott A, West JD, Klaić L, Westerheide SD, Silverman RB, Morimoto RI, Morano KA (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 19:1104–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CJ, Aslam K, Drendel HM et al (2015) Hsp31 is a stress response chaperone that intervenes in the protein misfolding process. J Biol Chem 290:24816–24834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu BP, Ho-Schleyer SC, Travers KJ, Weissman JS (2000) Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290:1571–1574

    Article  CAS  PubMed  Google Scholar 

  • Valastyan JS, Lindquist S (2014) Mechanisms of protein-folding diseases at a glance. Dis Model Mech 7:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veal EA, Ross SJ, Malakasi P, Peacock E, Morgan BA (2003) Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J Biol Chem 278:30896–30904

    Article  CAS  PubMed  Google Scholar 

  • Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace EWJ, Kear-Scott JL, Pilipenko EV et al (2015) Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162:1286–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sevier CS (2016) Formation and reversibility of BiP protein cysteine oxidation facilitate cell survival during and post oxidative stress. J Biol Chem 291:7541–7557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CC, Tsou CL (1993) Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J 7:1515–1517

    Article  CAS  PubMed  Google Scholar 

  • Wang AM, Morishima Y, Clapp KM et al (2010) Inhibition of Hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J Biol Chem 285:15714–15723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gibney PA, West JD, Morano KA (2012) The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by thiol-reactive compounds. Mol Biol Cell 23:3290–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Pareja KA, Kaiser CA, Sevier CS (2014) Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress. elife 3:e03496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei J, Hendershot LM (1995) Characterization of the nucleotide binding properties and ATPase activity of recombinant hamster BiP purified from bacteria. J Biol Chem 270:26670–26676

    Article  CAS  PubMed  Google Scholar 

  • Weids AJ, Grant CM (2014) The yeast peroxiredoxin Tsa1 protects against protein-aggregate-induced oxidative stress. J Cell Sci 127:1327–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weids AJ, Ibstedt S, Tamás MJ, Grant CM (2016) Distinct stress conditions result in aggregation of proteins with similar properties. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  • West JD, Stamm CE, Brown HA, Justice SL, Morano KA (2011) Enhanced toxicity of the protein cross-linkers divinyl sulfone and diethyl acetylenedicarboxylate in comparison to related monofunctional electrophiles. Chem Res Toxicol 24:1457–1459

    Article  CAS  PubMed  Google Scholar 

  • West JD, Wang Y, Morano KA (2012) Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 25:2036–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MA, St Amour CV, Collins JL, Ringe D, Petsko GA (2004) The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: a member of the DJ-1/ThiJ/PfpI superfamily. Proc Natl Acad Sci U S A 101:1531–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter J, Linke K, Jatzek A, Jakob U (2005) Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17:381–392

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561

    Article  CAS  PubMed  Google Scholar 

  • Wood MJ, Storz G, Tjandra N (2004) Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430:917–921

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Marsh HM, Sevier CS (2016) A conserved cysteine within the ATPase domain of the endoplasmic reticulum chaperone BiP is necessary for a complete complement of BiP activities. J Mol Biol 428:4168–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Lee LH, Davis LI (1998) Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 17:7416–7429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Kolm RH, Mannervik B, Talalay P (1995) Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transferases. Biochem Biophys Res Commun 206:748–755

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yang J, Wu S, Gong W, Chen C, Perrett S (2016) Glutathionylation of the bacterial Hsp70 chaperone DnaK provides a link between oxidative stress and the heat shock response. J Biol Chem 291:6967–6981

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Krakowiak J, Patel N, Beyzavi A, Ezike J, Khalil AS, Pincus D (2016) Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. elife 5:e18638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Gottesman S, Hoskins JR, Maurizi MR, Wickner S (2001) The RssB response regulator directly targets σS for degradation by ClpXP. Genes Dev 15:627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Zhu M, Wilson MA, Petsko GA, Fink AL (2006) The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. J Mol Biol 356:1036–1048

    Article  CAS  PubMed  Google Scholar 

  • Zmijewski JW, Banerjee S, Abraham E (2009) S-glutathionylation of the Rpn2 regulatory subunit inhibits 26 S proteasomal function. J Biol Chem 284:22213–22221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory was supported by NIH grant GM127287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Morano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ford, A.E., Morano, K.A. (2019). Thiol-Based Redox Signaling: Impacts on Molecular Chaperones and Cellular Proteostasis. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_1

Download citation

Publish with us

Policies and ethics