Skip to main content

Gambling Disorder and Substance-Related Disorders: Similarities and Differences

  • Chapter
  • First Online:

Abstract

Gambling disorder (GD) has important similarities with substance use disorders (SUDs) in terms of both diagnostic criteria and underlying mechanisms of action. With regard to diagnostic criteria, only craving is not present as a formal criterion in DSM-5 GD, and chasing losses is not present in SUDs. All other major diagnostic criteria such as loss of control over gambling, tolerance, withdrawal, and negative consequences due to gambling overlap with those of SUD. With regard to underlying mechanisms and vulnerability factors, higher impulsivity, abnormalities in decision-making, deficient executive functions, and related fronto-striatal brain circuitry abnormalities are related to the development and course of both SUD and GD. However, there are also differences between GD and SUD. In gambling, cognitive factors such as risk-taking and decision-making are intrinsically related to the addictive behavior itself, whereas in SUD these effects can also be associated with the pharmacological effect or the neurotoxicity related to (chronic) substance use. Moreover misperceptions with regard to gambling, the experience and interpretation of near misses, and the processing of (potential) rewards and losses influence the experience of gambling, which is not true for SUD. Importantly, these aspects also differ between disordered gamblers and non-problematic gamblers and are thus unique for GD and consitute a risk for relapse. Both shared and unique mechanisms are relevant as targets for the treatment of GD. This chapter concludes with a discussion on novel treatment methods that target some of the working mechanisms shared by GD and SUDs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  2. Blaszczynski A, Nower L. A pathways model of problem and pathological gambling. Addiction. 2002;97(5):487–99.

    Article  PubMed  Google Scholar 

  3. Sharpe L. A reformulated cognitive-behavioral model of problem gambling. A biopsychosocial perspective. Clin Psychol Rev. 2002;22(1):1–25.

    Article  PubMed  Google Scholar 

  4. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatr. 2002;159(10):1642–52.

    Article  PubMed  Google Scholar 

  5. Raylu N, Oei TP. Role of culture in gambling and problem gambling. Clin Psychol Rev. 2004;23(8):1087–114.

    Article  PubMed  Google Scholar 

  6. Slutske WS, Eisen S, True WR, Lyons MJ, Goldberg J, Tsuang M. Common genetic vulnerability for pathological gambling and alcohol dependence in men. Arch Gen Psychiatry. 2000;57(7):666–73.

    Article  CAS  PubMed  Google Scholar 

  7. Slutske WS, Moffitt TE, Poulton R, Caspi A. Undercontrolled temperament at age 3 predicts disordered gambling at age 32: a longitudinal study of a complete birth cohort. Psychol Sci. 2012;23(5):510–6. 0956797611429708 [pii].

    Google Scholar 

  8. Vitaro F, Arseneault L, Tremblay RE. Dispositional predictors of problem gambling in male adolescents. Am J Psychiatr. 1997;154(12):1769–70.

    Article  CAS  PubMed  Google Scholar 

  9. Vitaro F, Arseneault L, Tremblay RE. Impulsivity predicts problem gambling in low SES adolescent males. Addiction. 1999;94(4):565–75.

    Article  CAS  PubMed  Google Scholar 

  10. Alvarez-Moya EM, Ochoa C, Jimenez-Murcia S, Aymami MN, Gomez-Pena M, Fernandez-Aranda F, et al. Effect of executive functioning, decision-making and self-reported impulsivity on the treatment outcome of pathologic gambling. J Psychiatry Neurosci. 2011;36(3):165–75.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. The role of self-reported impulsivity and reward sensitivity versus neurocognitive measures of disinhibition and decision-making in the prediction of relapse in pathological gamblers. Psychol Med. 2008;38(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  12. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Psychophysiological determinants and concomitants of deficient decision making in pathological gamblers. Drug Alcohol Depend. 2006;84(3):231–9.

    Article  PubMed  Google Scholar 

  13. Romanczuk-Seiferth N, Koehler S, Dreesen C, Wüstenberg T, Heinz A. Pathological gambling and alcohol dependence: neural disturbances in reward and loss avoidance processing. Addict Biol. 2015;20:557–69.

    Article  PubMed  Google Scholar 

  14. de Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology. 2009;34(4):1027–38. npp2008175 [pii].

    Google Scholar 

  15. Clark L, Lawrence AJ, Astley-Jones F, Gray N. Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron. 2009;61(3):481–90. S0896-6273(09)00037-3 [pii]

    Google Scholar 

  16. Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51(6):768–74.

    Article  CAS  PubMed  Google Scholar 

  17. Baumann AA, Odum AL. Impulsivity, risk taking, and timing. Behav Process. 2012;90(3):408–14.

    Article  Google Scholar 

  18. Broos N, Schmaal L, Wiskerke J, Kostelijk L, Lam T, Stoop N, et al. The relationship between impulsive choice and impulsive action: a cross-species translational study. PLoS One. 2012;7(5):e36781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jentsch JD, Ashenhurst JR, Cervantes MC, Groman SM, James AS, Pennington ZT. Dissecting impulsivity and its relationships to drug addictions. Ann N Y Acad Sci. 2014;1327:1–26.

    PubMed  PubMed Central  Google Scholar 

  20. Whiteside SP, Lynam DR. Understanding the role of impulsivity and externalizing psychopathology in alcohol abuse: application of the UPPS impulsive behavior scale. Exp Clin Psychopharmacol. 2003;11(3):210–7.

    Article  PubMed  Google Scholar 

  21. Wilbertz T, Deserno L, Horstmann A, Neumann J, Villringer A, Heinze HJ, et al. Response inhibition and its relation to multidimensional impulsivity. Neuroimage. 2014;103:241–8.

    Article  PubMed  Google Scholar 

  22. Aichert DS, Wostmann NM, Costa A, Macare C, Wenig JR, Moller HJ, et al. Associations between trait impulsivity and prepotent response inhibition. J Clin Exp Neuropsychol. 2012;34(10):1016–32.

    Article  PubMed  Google Scholar 

  23. Fuentes D, Tavares H, Artes R, Gorenstein C. Self-reported and neuropsychological measures of impulsivity in pathological gambling. J Int Neuropsychol Soc. 2006;12(6):907–12. S1355617706061091 [pii].

    Google Scholar 

  24. Knezevic B, Ledgerwood DM. Gambling severity, impulsivity, and psychopathology: comparison of treatment- and community-recruited pathological gamblers. Am J Addict. 2012;21(6):508–15.

    Article  PubMed  Google Scholar 

  25. Kraplin A, Buhringer G, Oosterlaan J, van den Brink W, Goschke T, Goudriaan AE. Dimensions and disorder specificity of impulsivity in pathological gambling. Addict Behav. 2014;39(11):1646–51. S0306-4603(14)00170-1 [pii].

    Google Scholar 

  26. Petry NM. Substance abuse, pathological gambling, and impulsiveness. Drug Alcohol Depend. 2001;63(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez-Jimenez R, Avila C, Jimenez-Arriero MA, Ponce G, Monasor R, Jimenez M, et al. Impulsivity and sustained attention in pathological gamblers: influence of childhood ADHD history. J Gambl Stud. 2006;22(4):451–61.

    Article  CAS  PubMed  Google Scholar 

  28. Albein-Urios N, Martinez-Gonzalez JM, Lozano O, Clark L, Verdejo-Garcia A. Comparison of impulsivity and working memory in cocaine addiction and pathological gambling: implications for cocaine-induced neurotoxicity. Drug Alcohol Depend. 2012;126(1–2):1–6.

    Article  CAS  PubMed  Google Scholar 

  29. Billieux J, Lagrange G, Van der Linden M, Lancon C, Adida M, Jeanningros R. Investigation of impulsivity in a sample of treatment-seeking pathological gamblers: a multidimensional perspective. Psychiatry Res. 2012;198(2):291–6.

    Article  PubMed  Google Scholar 

  30. Cyders MA, Smith GT. Clarifying the role of personality dispositions in risk for increased gambling behavior. Pers Individ Dif. 2008;45(6):503–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grall-Bronnec M, Wainstein L, Feuillet F, Bouju G, Rocher B, Venisse JL, Sebille-Rivain V. Clinical profiles as a function of level and type of impulsivity in a sample group of at-risk and pathological gamblers seeking treatment. J Gambl Stud. 2012;28(2):239–52.

    Article  PubMed  Google Scholar 

  32. Michalczuk R, Bowden-Jones H, Verdejo-Garcia A, Clark L. Impulsivity and cognitive distortions in pathological gamblers attending the UK National Problem Gambling Clinic: a preliminary report. Psychol Med. 2011;41(12):2625–35. S003329171100095X [pii].

    Google Scholar 

  33. Berg JM, Latzman RD, Bliwise NG, Lilienfeld SO. Parsing the heterogeneity of impulsivity: a meta-analytic review of the behavioral implications of the UPPS for psychopathology. Psychol Assess. 2015;27(4):1129–46.

    Article  PubMed  Google Scholar 

  34. Littlefield AK, Stevens AK, Sher KJ. Impulsivity and alcohol involvement: multiple, distinct constructs and processes. Curr Addict Rep. 2014;1:33–40.

    Article  PubMed  Google Scholar 

  35. Stanford MS, Mathias CW, Dougherty DM, Lake SL, Anderson NE, Patton JH. Fifty years of the Barratt impulsiveness scale: an update and review. Personal Individ Differ. 2009;47:385–95.

    Article  Google Scholar 

  36. Fillmore MT, Rush CR. Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend. 2002;66(3):265–73.

    Article  PubMed  Google Scholar 

  37. Hester R, Garavan H. Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci. 2004;24(49):11017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaufman JN, Ross TJ, Stein EA, Garavan H. Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci. 2003;23(21):7839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moeller FG, Barratt ES, Fischer CJ, Dougherty DM, Reilly EL, Mathias CW, Swann AC. P300 event-related potential amplitude and impulsivity in cocaine-dependent subjects. Neuropsychobiology. 2004;50(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  40. Verdejo-Garcia AJ, Perales JC, Perez-Garcia M. Cognitive impulsivity in cocaine and heroin polysubstance abusers. Addict Behav. 2007;32(5):950–66. S0306-4603(06)00216-4 [pii].

    Google Scholar 

  41. Clark L, Robbins TW, Ersche KD, Sahakian BJ. Reflection impulsivity in current and former substance users. Biol Psychiatry. 2006;60(5):515–22. S0006-3223(05)01397-1 [pii]

    Google Scholar 

  42. Ersche KD, Clark L, London M, Robbins TW, Sahakian BJ. Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology. 2006;31(5):1036–47. 1300889 [pii].

    Google Scholar 

  43. Gruber SA, Silveri MM, Yurgelun-Todd DA. Neuropsychological consequences of opiate use. Neuropsychol Rev. 2007;17(3):299–315.

    Article  PubMed  Google Scholar 

  44. Mintzer MZ, Stitzer ML. Cognitive impairment in methadone maintenance patients. Drug Alcohol Depend. 2002;67(1):41–51.

    Article  PubMed  Google Scholar 

  45. Bjork JM, Hommer DW, Grant SJ, Danube C. Impulsivity in abstinent alcohol-dependent patients: relation to control subjects and type 1-/type 2-like traits. Alcohol. 2004;34(2–3):133–50.

    Article  PubMed  Google Scholar 

  46. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction. 2006;101(4):534–47.

    Article  PubMed  Google Scholar 

  47. Kamarajan C, Porjesz B, Jones KA, Choi K, Chorlian DB, Padmanabhapillai A, et al. The role of brain oscillations as functional correlates of cognitive systems: a study of frontal inhibitory control in alcoholism. Int J Psychophysiol. 2004;51(2):155–80.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morgan MJ. Recreational use of “ecstasy” (MDMA) is associated with elevated impulsivity. Neuropsychopharmacology. 1998;19(4):252–64. S0893-133X(98)00012-8 [pii].

    Google Scholar 

  49. Morgan MJ, Impallomeni LC, Pirona A, Rogers RD. Elevated impulsivity and impaired decision-making in abstinent ecstasy (MDMA) users compared to polydrug and drug-naive controls. Neuropsychopharmacology. 2006;31(7):1562–73. 1300953 [pii].

    Google Scholar 

  50. Quednow BB, Kuhn KU, Hoppe C, Westheide J, Maier W, Daum I, Wagner M. Elevated impulsivity and impaired decision-making cognition in heavy users of MDMA (“Ecstasy”). Psychopharmacology (Berl). 2007;189(4):517–30.

    Article  CAS  Google Scholar 

  51. Monterosso JR, Aron AR, Cordova X, Xu J, London ED. Deficits in response inhibition associated with chronic methamphetamine abuse. Drug Alcohol Depend. 2005;79(2):273–7. S0376-8716(05)00060-8 [pii].

    Google Scholar 

  52. Salo R, Nordahl TE, Possin K, Leamon M, Gibson DR, Galloway GP, et al. Preliminary evidence of reduced cognitive inhibition in methamphetamine-dependent individuals. Psychiatry Res. 2002;111(1):65–74.

    Article  PubMed  Google Scholar 

  53. van der Plas EA, Crone EA, van den Wildenberg WP, Tranel D, Bechara A. Executive control deficits in substance-dependent individuals: a comparison of alcohol, cocaine, and methamphetamine and of men and women. J Clin Exp Neuropsychol. 2009;31(6):706–19. 906024863 [pii].

    Google Scholar 

  54. Colzato LS, van den Wildenberg WP, Hommel B. Impaired inhibitory control in recreational cocaine users. PLoS One. 2007;2(11):e1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brand M, Roth-Bauer M, Driessen M, Markowitsch HJ. Executive functions and risky decision-making in patients with opiate dependence. Drug Alcohol Depend. 2008;97(1–2):64–72.

    Article  PubMed  Google Scholar 

  56. Pau CW, Lee TM, Chan SF. The impact of heroin on frontal executive functions. Arch Clin Neuropsychol. 2002;17(7):663–70.

    Article  PubMed  Google Scholar 

  57. Fernandez-Serrano MJ, Perez-Garcia M, Verdejo-Garcia A. What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neurosci Biobehav Rev. 2011;35(3):377–406. S0149-7634(10)00092-8 [pii].

    Google Scholar 

  58. Schulte MH, Cousijn J, den Uyl TE, Goudriaan AE, van den Brink W, Veltman DJ, et al. Recovery of neurocognitive functions following sustained abstinence after substance dependence and implications for treatment. Clin Psychol Rev. 2014;34(7):531–50. S0272-7358(14)00119-6 [pii].

    Google Scholar 

  59. Kertzman S, Lowengrub K, Aizer A, Vainder M, Kotler M, Dannon PN. Go-no-go performance in pathological gamblers. Psychiatry Res. 2008;161(1):1–10. S0165-1781(07)00210-7 [pii].

    Google Scholar 

  60. Kertzman S, Lowengrub K, Aizer A, Nahum ZB, Kotler M, Dannon PN. Stroop performance in pathological gamblers. Psychiatry Res. 2006;142(1):1–10. S0165-1781(05)00242-8 [pii].

    Google Scholar 

  61. Smith JL, Mattick RP, Jamadar SD, Iredale JM. Deficits in behavioural inhibition in substance abuse and addiction: a meta-analysis. Drug Alcohol Depend. 2014;145:1–33.

    Article  PubMed  Google Scholar 

  62. Joos L, Goudriaan AE, Schmaal L, Fransen E, van den Brink W, Sabbe BG, Dom G. Effect of modafinil on impulsivity and relapse in alcohol dependent patients: a randomized, placebo-controlled trial. Eur Neuropsychopharmacol. S0924-977X(12)00283-0 [pii]. 2012.

    Google Scholar 

  63. Zack M, Poulos CX. Effects of the atypical stimulant modafinil on a brief gambling episode in pathological gamblers with high vs. low impulsivity. J Psychopharmacol. 2009;23(6):660–71. 0269881108091072 [pii].

    Google Scholar 

  64. Luijten M, Machielsen MW, Veltman DJ, Hester R, de Haan L, Franken IH. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci. 2014;39(3):149–69.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Amlung M, Vedelago L, Acker J, Balodis I, MacKillop J. Steep delay discounting and addictive behavior: a meta-analysis of continuous associations. Addiction. 2017;112(1):51–62.

    Article  PubMed  Google Scholar 

  66. Petry NM. Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controls. Psychopharmacology. 2001;154(3):243–50.

    Article  CAS  PubMed  Google Scholar 

  67. Kirby KN, Petry NM, Bickel WK. Heroin addicts have higher discount rates for delayed rewards than nondrug-using controls. J Exp Psychol Gen. 1999;128:78–87.

    Article  CAS  PubMed  Google Scholar 

  68. Kirby KN, Petry NM. Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction. 2004;99:461–71.

    Article  PubMed  Google Scholar 

  69. Dom G, De WB, Hulstijn W, van den Brink W, Sabbe B. Behavioural aspects of impulsivity in alcoholics with and without a cluster-B personality disorder. Alcohol Alcohol. 2006;41(4):412–20. agl030 [pii].

    Google Scholar 

  70. Petry NM. Discounting of delayed rewards in substance abusers: relationship to antisocial personality disorder. Psychopharmacology (Berl). 2002;162(4):425–32.

    Article  CAS  Google Scholar 

  71. Dixon MR, Marley J, Jacobs EA. Delay discounting by pathological gamblers. J Appl Behav Anal. 2003;36(4):449–58.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Miedl SF, Buchel C, Peters J. Cue-induced craving increases impulsivity via changes in striatal value signals in problem gamblers. J Neurosci. 2014;34(13):4750–5.

    Google Scholar 

  73. Bechara A, Damasio H. Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia. 2002;40(10):1675–89.

    Article  PubMed  Google Scholar 

  74. Bechara A, Martin EM. Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology. 2004;18(1):152–62.

    Article  PubMed  Google Scholar 

  75. Dom G, De WB, Hulstijn W, van den Brink W, Sabbe B. Decision-making deficits in alcohol-dependent patients with and without comorbid personality disorder. Alcohol Clin Exp Res. 2006;30(10):1670–7. ACER202 [pii].

    Google Scholar 

  76. Ernst M, Grant SJ, London ED, Contoreggi CS, Kimes AS, Spurgeon L. Decision making in adolescents with behavior disorders and adults with substance abuse. Am J Psychiatr. 2003;160(1):33–40.

    Article  PubMed  Google Scholar 

  77. Ersche KD, Fletcher PC, Lewis SJ, Clark L, Stocks-Gee G, London M, et al. Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology (Berl). 2005;180(4):612–23.

    Article  CAS  Google Scholar 

  78. Rotherham-Fuller E, Shoptaw S, Berman SM, London ED. Impaired performance in a test of decision-making by opiate-dependent tobacco smokers. Drug Alcohol Depend. 2004;73(1):79–86.

    Google Scholar 

  79. Whitlow CT, Liguori A, Livengood LB, Hart SL, Mussat-Whitlow BJ, Lamborn CM, et al. Long-term heavy marijuana users make costly decisions on a gambling task. Drug Alcohol Depend. 2004;76(1):107–11.

    Article  PubMed  Google Scholar 

  80. Dom G, Sabbe B, Hulstijn W, van den BW. Substance use disorders and the orbitofrontal cortex: systematic review of behavioural decision-making and neuroimaging studies. Br J Psychiatry. 2005;187:209–20.

    Article  CAS  PubMed  Google Scholar 

  81. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Res Cogn Brain Res. 2005;23(1):137–51.

    Article  PubMed  Google Scholar 

  82. Biernacki K, McLennan SN, Terrett G, Labuschagne I, Rendell PG. Decision-making ability in current and past users of opiates: a meta-analysis. Neurosci Biobehav Rev. 2016;71:342–51.

    Article  PubMed  Google Scholar 

  83. Brand M, Kalbe E, Labudda K, Fujiwara E, Kessler J, Markowitsch HJ. Decision-making impairments in patients with pathological gambling. Psychiatry Res. 2005;133(1):91–9.

    Article  PubMed  Google Scholar 

  84. Cavedini P, Riboldi G, Keller R, D’Annucci A, Bellodi L. Frontal lobe dysfunction in pathological gambling patients. Biol Psychiatry. 2002;51(4):334–41.

    Article  PubMed  Google Scholar 

  85. Ashrafioun L, Rosenberg H, Cross NA, Brian TJ. Further evaluation of the construct, convergent and criterion validity of the Gambling Urge Scale with university-student gamblers. Am J Drug Alcohol Abuse. 2013;39(5):326–31.

    Article  PubMed  Google Scholar 

  86. Young MM, Wohl MJ. The gambling craving scale: psychometric validation and behavioral outcomes. Psychol Addict Behav. 2009;23(3):512–22.

    Article  PubMed  Google Scholar 

  87. Ashrafioun L, Rosenberg H. Methods of assessing craving to gamble: a narrative review. Psychol Addict Behav. 2012;26(3):536–49.

    Article  PubMed  Google Scholar 

  88. Courtney KE, Schacht JP, Hutchison K, Roche DJ, Ray LA. Neural substrates of cue reactivity: association with treatment outcomes and relapse. Addict Biol. 2016;21(1):3–22.

    Article  PubMed  Google Scholar 

  89. Kuhn S, Gallinat J. Common biology of craving across legal and illegal drugs – a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci. 2011;33(7):1318–26.

    Article  PubMed  Google Scholar 

  90. Noori HR, Cosa Linan A, Spanagel R. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: a comprehensive meta-analysis. Eur Neuropsychopharmacol. 2016;26(9):1419–30.

    Article  CAS  PubMed  Google Scholar 

  91. Crockford DN, Goodyear B, Edwards J, Quickfall J, el-Guebaly N. Cue-induced brain activity in pathological gamblers. Biol Psychiatry. 2005;58(10):787–95.

    Article  PubMed  Google Scholar 

  92. Goudriaan AE, de Ruiter MB, van den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers, and healthy controls: an fMRI study. Addict Biol. 2010;15(4):491–503.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Limbrick-Oldfield EH, Mick I, Cocks RE, McGonigle J, Sharman SP, Goldstone AP, Stokes PR, Waldman A, Erritzoe D, Bowden-Jones H, Nutt D, Lingford-Hughes A, Clark L. Neural substrates of cue reactivity and craving in gambling disorder. Transl Psychiatry. 2017;7:e992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Holst RJ, van der Meer JN, McLaren DG, van den Brink W, Veltman DJ, Goudriaan AE. Interactions between affective and cognitive processing systems in problematic gamblers: a functional connectivity study. PLoS One. 2012;7(11):e49923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cox WM, Fadardi JS, Pothos EM. The addiction-stroop test: theoretical considerations and procedural recommendations. Psychol Bull. 2006;132(3):443–76. 2006-06233-005 [pii].

    Google Scholar 

  96. Loeber S, Vollstadt-Klein S, von der Goltz C, Flor H, Mann K, Kiefer F. Attentional bias in alcohol-dependent patients: the role of chronicity and executive functioning. Addict Biol. 2009;14(2):194–203. ADB146 [pii].

    Google Scholar 

  97. Lubman DI, Peters LA, Mogg K, Bradley BP, Deakin JF. Attentional bias for drug cues in opiate dependence. Psychol Med. 2000;30(1):169–75.

    Article  CAS  PubMed  Google Scholar 

  98. Sinclair JM, Nausheen B, Garner MJ, Baldwin DS. Attentional biases in clinical populations with alcohol use disorders: is co-morbidity ignored? Hum Psychopharmacol. 2010;25(7–8):515–24.

    Google Scholar 

  99. Townshend JM, Duka T. Attentional bias associated with alcohol cues: differences between heavy and occasional social drinkers. Psychopharmacology. 2001;157(1):67–74.

    Google Scholar 

  100. Weinstein A, Cox WM. Cognitive processing of drug-related stimuli: the role of memory and attention. J Psychopharmacol. 2006;20(6):850–9. 0269881106061116 [pii].

    Google Scholar 

  101. Constantinou N, Morgan CJ, Battistella S, O’Ryan D, Davis P, Curran HV. Attentional bias, inhibitory control and acute stress in current and former opiate addicts. Drug Alcohol Depend. 2010;109(1–3):220–5. S0376-8716(10)00040-2 [pii].

    Google Scholar 

  102. Townshend JM, Duka T. Avoidance of alcohol-related stimuli in alcohol-dependent inpatients. Alcohol Clin Exp Res. 2007;31(8):1349–57. ACER429 [pii].

    Google Scholar 

  103. Vollstadt-Klein S, Loeber S, von der Goltz C, Mann K, Kiefer F. Avoidance of alcohol-related stimuli increases during the early stage of abstinence in alcohol-dependent patients. Alcohol Alcohol. 2009;44(5):458–63. agp056 [pii].

    Google Scholar 

  104. McCusker CG, Gettings B. Automaticity of cognitive biases in addictive behaviours: further evidence with gamblers. Br J Clin Psychol. 1997;36(Pt 4):543–54.

    Google Scholar 

  105. Boyer M, Dickerson M. Attentional bias and addictive behaviour: automaticity in a gambling-specific modified Stroop task. Addiction. 2003;98(1):61–70.

    Google Scholar 

  106. Ciccarelli M, Nigro G, Griffiths MD, Cosenza M, D’Olimpio F. Attentional biases in problem and non-problem gamblers. J Affect Disord. 2016;198:135–41.

    Google Scholar 

  107. Ciccarelli M, Nigro G, Griffiths MD, Cosenza M, D’Olimpio F. Attentional bias in non-problem gamblers, problem gamblers, and abstinent pathological gamblers: an experimental study. J Affect Disord. 2016;206:9–16.

    Article  PubMed  Google Scholar 

  108. Miedl SF, Fehr T, Meyer G, Herrmann M. Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res. 2010;181(3):165–73. S0925-4927(09)00277-7 [pii].

    Google Scholar 

  109. van Holst RJ, Veltman DJ, Buchel C, van den Brink W, Goudriaan AE. Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry. 2012;71(8):741–8. S0006-3223(12)00056-X [pii].

    Google Scholar 

  110. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21(16):RC159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. NeuroImage. 2003;18(2):263–72.

    Google Scholar 

  112. Goodie AS. The role of perceived control and overconfidence in pathological gambling. J Gambl Stud. 2005;21:481–502.

    Article  PubMed  Google Scholar 

  113. Reuter J, Raedler T, Rose M, Hand I, Glascher J, Buchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8(2):147–8.

    Google Scholar 

  114. Tanabe J, Thompson L, Claus E, Dalwani M, Hutchison K, Banich MT. Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Hum Brain Mapp. 2007;28(12):1276–86.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction : an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry. 2017.

    Google Scholar 

  116. Brevers D, Noel X, He Q, Melrose JA, Bechara A. Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity. Addict Biol. 2016;21(3):688–99.

    Article  PubMed  Google Scholar 

  117. Worhunsky PD, Malison RT, Rogers RD, Potenza MN. Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug Alcohol Depend. 2014;145:77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Miedl SF, Fehr T, Herrmann M, Meyer G. Risk assessment and reward processing in problem gambling investigated by event-related potentials and fMRI-constrained source analysis. BMC Psychiatry. 2014;14:229.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71(8):749–57.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Choi JS, Shin YC, Jung WH, Jang JH, Kang DH, Choi CH, et al. Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PLoS One. 2012;7(9):e45938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hewig J, Kretschmer N, Trippe RH, Hecht H, Coles MG, Holroyd CB, Miltner WH. Hypersensitivity to reward in problem gamblers. Biol Psychiatry. 2010;67(8):781–3. S0006-3223(09)01346-8 [pii].

    Google Scholar 

  122. Billieux J, Van der Linden M, Khazaal Y, Zullino D, Clark L. Trait gambling cognitions predict near-miss experiences and persistence in laboratory slot machine gambling. Br J Psychol. 2012;103(3):412–27.

    Article  PubMed  Google Scholar 

  123. Ulrich N, Ambach W, Hewig J. Severity of gambling problems modulates autonomic reactions to near outcomes in gambling. Biol Psychol. 2016;119:11–20.

    Article  PubMed  Google Scholar 

  124. Chase HW, Clark L. Gambling severity predicts midbrain response to near-miss outcomes. J Neurosci. 2010;30(18):6180–7.

    Google Scholar 

  125. van Holst RJ, Chase HW, Clark L. Striatal connectivity changes following gambling wins and near-misses: associations with gambling severity. Neuroimage Clin. 2014;5:232–9.

    Google Scholar 

  126. Sescousse G, Janssen LK, Hashemi MM, Timmer MH, Geurts DE, Ter Huurne NP, Clark L, Cools R. Amplified striatal responses to near-miss outcomes in pathological gamblers. Neuropsychopharmacology. 2016;41:2614–23.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fauth-Buhler M, Mann K, Potenza MN. Pathological gambling: a review of the neurobiological evidence relevant for its classification as an addictive disorder. Addict Biol. 2016.

    Google Scholar 

  128. Figee M, Pattij T, Willuhn I, Luigjes J, van den Brink W, Goudriaan A, et al. Compulsivity in obsessive-compulsive disorder and addictions. Eur Neuropsychopharmacol. 2016;26(5):856–68.

    Google Scholar 

  129. de Wit SJ, de Vries FE, van der Werf YD, Cath DC, Heslenfeld DJ, Veltman EM, et al. Presupplementary motor area hyperactivity during response inhibition: a candidate endophenotype of obsessive-compulsive disorder. Am J Psychiatry. 2012;169(10):1100–8.

    Article  PubMed  Google Scholar 

  130. Jansen JM, Daams J, Koeter MW, Veltman DJ, van den Brink W, Goudriaan AE. Effects of non-invasive neuro-stimulation on craving: a meta-analysis. Neurosci Biobehav Rev. 2013;37(10):2472–80.

    Article  PubMed  Google Scholar 

  131. Cristea IA, Kok RN, Cuijpers P. The effectiveness of cognitive bias modification interventions for substance addictions: a meta-analysis. PLoS One. 2016;11(9):e0162226.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Skorka-Brown J, Andrade J, Whalley B, May J. Playing Tetris decreases drug and other cravings in real world settings. Addict Behav. 2015;51:165–70.

    Article  PubMed  Google Scholar 

  133. Salling MC, Martinez D. Brain stimulation in addiction. Neuropsychopharmacology. 2016;41(12):2798–809.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Amiaz R, Levy D, Vainiger D, Grunhaus L, Zangen A. Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction. 2009;104(4):653–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna E. Goudriaan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goudriaan, A.E., van den Brink, W., van Holst, R.J. (2019). Gambling Disorder and Substance-Related Disorders: Similarities and Differences. In: Heinz, A., Romanczuk-Seiferth, N., Potenza, M. (eds) Gambling Disorder. Springer, Cham. https://doi.org/10.1007/978-3-030-03060-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03060-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03058-2

  • Online ISBN: 978-3-030-03060-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics