Skip to main content

Keratin Processing

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

This chapter deals with the various ways in which keratin (extracted from different sources) can be processed to obtain different types of products. In the first section, solvents and polymers that must be employed to make this natural biopolymer usable are discussed. Sections 25 are mainly oriented in the transformations of keratin in processes such as spinning, electrospinning, casting, foaming, and freeze-drying. In addition, some products (fibers, nanofibers, films, coating, and sponge) and applications (filtration, adsorption, and scaffolds) corresponding to the procedures mentioned above are reported. The last section is related to the chemical treatments (e.g., crosslinking) applied to keratin to modify its properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alemdar A, Iridag Y, Kazanci M (2005) Flow behavior of regenerated wool-keratin proteins in different mediums. Int J Biol Macromol 35:151–153

    Article  CAS  PubMed  Google Scholar 

  • Aluigi A, Corbellini A, Rombaldoni F et al (2013a) Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions. Text Res J 83:1574–1586

    Article  CAS  Google Scholar 

  • Aluigi A, Corbellini A, Rombaldonia F et al (2013b) Morphological and structural investigation of wool-derived keratin nanofibres crosslinked by thermal treatment. Int J Biol Macromol 57:30–37

    Article  CAS  PubMed  Google Scholar 

  • Aluigi A, Tonetti C, Vineis C et al (2011) Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. Eur Polym J 47:1756–1764

    Article  CAS  Google Scholar 

  • Aluigi A, Tonetti C, Vineis C et al (2012a) Study on the adsorption of chromium(VI) by hydrolyzed keratin/polyamide 6 blend nanofibers. J Nanosci Nanotechnol 12:7250–7259

    Article  CAS  PubMed  Google Scholar 

  • Aluigi A, Tonetti C, Vineis C et al (2012b) Wool keratin nanofibres for copper(II) adsorption. J Biobased Mater Bioenergy 6:1–7

    Article  CAS  Google Scholar 

  • Aluigi A, Varesano A, Montarsolo A et al (2007a) Electrospinning of keratin/poly(ethylene oxide) blend nanofibers. J Appl Polym Sci 104:863–870

    Article  CAS  Google Scholar 

  • Aluigi A, Varesano A, Vineis C et al (2017) Electrospinning of immiscible systems: the wool keratin/polyamide-6 case study. Mater Des 127:144–153

    Article  CAS  Google Scholar 

  • Aluigi A, Vineis C, Ceria A et al (2008a) Composite biomaterials from fibre wastes: characterization of wool–cellulose acetate blends. Compos A 39:126–132

    Article  CAS  Google Scholar 

  • Aluigi A, Vineis C, Tonin C et al (2009) Wool keratin-based nanofibres for active filtration of air and water. J Biobased Mater Bioenergy 3:311–319

    Article  CAS  Google Scholar 

  • Aluigi A, Vineis C, Varesano A et al (2008b) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465–2475

    Article  CAS  Google Scholar 

  • Aluigi A, Zoccola M, Vineis C et al (2007b) Study on the structure and properties of wool keratin regenerated from formic acid. Int J Biol Macromol 41:266–273

    Article  CAS  PubMed  Google Scholar 

  • Balaji S, Kumar R, Sripriya R et al (2012) Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications. J Mater Sci Eng C 32:975–982

    Article  CAS  Google Scholar 

  • Barati D, Kader S, Pajoum Shariati SR et al (2017) Synthesis and characterization of photo-cross-linkable keratin hydrogels for stem cell encapsulation. Biomacromolecules 18:398–412

    Article  CAS  PubMed  Google Scholar 

  • Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8

    Article  CAS  Google Scholar 

  • Barone JR, Schmidt WF, Gregoire N (2006) Extrusion of feather keratin. J Appl Polym Sci 100:1432–1442

    Article  CAS  Google Scholar 

  • Barone JR, Schmidt WF, Liebner CF (2005) Thermally processed keratin films. J Appl Polym Sci 97:1644–1651

    Article  CAS  Google Scholar 

  • Bergsma JE, Rozema FR, Bos RRM et al (1995) In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials 16:267–274

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj N, Sow WT, Devi D et al (2015) Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Integr Biol 7:53–63

    Article  CAS  Google Scholar 

  • Bhavsar PS, Zoccola M, Patrucco A et al (2017) Superheated water hydrolyzed keratin: a new application as a foaming agent in foam dyeing of cotton and wool fabrics. ACS Sustainable Chem Eng 5:9150–9159

    Article  CAS  Google Scholar 

  • Bryner MA, Armantrout JE, Johnson BS (2006) Electroblowing web formation process. US Patent 2006/0138710, 29 Jun 2006

    Google Scholar 

  • Burnett LR, Rahmany MB, Richter JR et al (2013) Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials 34:2632–2640

    Article  CAS  PubMed  Google Scholar 

  • Cardamone JM, Tunick MH, Onwulata C (2013) Keratin sponge/hydrogel: I. Fabrication and characterization. Tex Res J 83:661–670

    Google Scholar 

  • Chen HL, Burns LD (2006) Environmental analysis of textile products. Cloth Text Res J 24:248–261

    Article  Google Scholar 

  • Choi J, Panthi G, Liu Y et al (2015) Keratin/poly(vinyl alcohol) blended nanofibers with high optical transmittance. Polymer 58:146–152

    Article  CAS  Google Scholar 

  • Cilurzoa F, Selmina F, Aluigi A et al (2013) Regenerated keratin proteins as potential biomaterial for drug delivery. Polym Adv Technol 24:1025–1028

    Article  CAS  Google Scholar 

  • de Guzman RC, Saul JM, Ellenburg MD et al (2013) Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials 34:1644–1656

    Article  PubMed  CAS  Google Scholar 

  • de Guzman RC, Tsuda SM, Ton MTN et al (2015) Binding interactions of keratin-based hair fiber extract to gold, keratin, and BMP-2. PLoS ONE 10:1–12

    CAS  Google Scholar 

  • Deitzel JM, Kleinmeyer J, Hirvonen JK et al (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42:8163–8170

    Article  CAS  Google Scholar 

  • Desai NP, Hubbel JA (1991) Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12:144–153

    Article  CAS  PubMed  Google Scholar 

  • Dias GJ, Mahoney P, Swain M et al (2010) Keratin–hydroxyapatite composites: biocompatibility, osseointegration, and physical properties in an ovine model. J Biomed Mater Res, Part A 95A:1084–1095

    Article  CAS  Google Scholar 

  • Dickerson MB, Sierra AA, Bedford NM et al (2013) Keratin-based antimicrobial textiles, films and nanofibers. J Mater Chem B 1:5505–5514

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Kimura E, Sato T et al (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902

    Article  CAS  Google Scholar 

  • Doshi J, Reneker DH (1993) Electrospinning process and applications of electrospun fibers. In: Conference record of the 1993 IEEE industry applications conference twenty-eighth IAS annual meeting, Toronto, October 1993. Lecture notes in industrial application society annual meeting, vol 3. IEEE, pp 1698–1703

    Google Scholar 

  • Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–160

    Article  CAS  Google Scholar 

  • Dotti F, Varesano A, Montarsolo A et al (2007) Electrospun porous mats for high efficiency filtration. J Ind Text 37:151–162

    Article  CAS  Google Scholar 

  • Dou Y, Zhang B, He M et al (2014) Preparation and physicochemical properties of dialdehyde starch crosslinked feather keratin/PVA composite films. J Macromol Sci Part A Pure Appl Chem 51:1009–1015

    Article  CAS  Google Scholar 

  • Dou Y, Zhang B, He M et al (2015) Keratin/polyvinyl alcohol blend films cross-linked by dialdehyde starch and their potential application for drug release. Polymers 7:580–591

    Article  CAS  Google Scholar 

  • Ebrahimgol F, Tavanaia H, Alihosseinia F et al (2014) Electrosprayed recovered wool keratin nanoparticles. Polym Adv Technol 25:1001–1007

    Article  CAS  Google Scholar 

  • Edwards A, Jarvis D, Hopkins T et al (2015) Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J Biomed Mater Res, Part B 103B:21–30

    Article  CAS  Google Scholar 

  • El-Kheir AA, Mowafi S, Abou Taleb M et al (2012) Preparation and characterization of keratin-polyvinyl alcohol composite film. Egypt J Chem 55:491–507

    Article  Google Scholar 

  • Ellison CJ, Phatak A, Giles DW et al (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber break-up. Polymer 48:3306–3316

    Article  CAS  Google Scholar 

  • EPA-United States (Environmental Protection Agency U.S.). http://www.epa.gov/. Accessed 17 May 2018

  • Eslahi N, Simchi A, Mehrjoo M et al (2016) Hybrid cross-linked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability. RSC Adv 6:62944–62957

    Article  CAS  Google Scholar 

  • Evans RL, Shore B (1948) Regenerated keratin. US Patent 2,434,688, 20 Jan 1948

    Google Scholar 

  • Fan J, Lei TD, Li J et al (2016) High protein content keratin/poly(ethylene oxide) nanofibers crosslinked in oxygen atmosphere and its cell culture. Mater Des 104:60–67

    Article  CAS  Google Scholar 

  • FAO-United Nations (Food and Agricultural Organizations of the United Nations). http://faostat.fao.org/. Accessed 17 May 2018

  • Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1,975,504, 2 Oct 1934

    Google Scholar 

  • Fowler WE, Aebi U (1983) Preparation of single molecules and supramolecular complexes for high resolution metal shadowing. J Ultrastruct Res 83:319–334

    Article  CAS  PubMed  Google Scholar 

  • Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28:5068–5073

    Article  CAS  PubMed  Google Scholar 

  • Fujii T (2012) Hair keratin film as a substitute device for human hair. J Biol Macromol 12:3–5

    Article  CAS  Google Scholar 

  • Fujii T, Murai S, Ohkawa K et al (2008) Effects of human hair and nail proteins and their films on rat mast cells. J Mater Sci Mater Med 19:2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Ide Y (2004) Preparation of translucent and flexible human hair protein films and their properties. Biol Pharm Bull 27:1433–1436

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Ogiwara D, Arimoto M (2004) Convenient procedures for human hair protein films and properties of alkaline phosphatase incormporated in the film. Biol Pharm Bull 27:89–93

    Article  CAS  PubMed  Google Scholar 

  • Ganesan P (2017) Natural and bio polymer curative films for wound dressing medical applications. Wound Med 18:33–40

    Article  Google Scholar 

  • Gao P, Liu Z, Wu X et al (2014a) Biosorption of chromium(VI) ions by deposits produced from chicken feathers after soluble keratin extraction. Clean: Soil, Air, Water 42:1558–1566

    CAS  Google Scholar 

  • Gao P, Li K, Liu Z et al (2014b) Feather keratin deposits as biosorbent for the removal of methylene blue from aqueous solution: equilibrium, kinetics, and thermodynamics studies. Water Air Soil Pollut 225:1946

    Article  CAS  Google Scholar 

  • Geidobler R, Winter G (2013) Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review. Eur J Pharm Biopharm 5:214–222

    Article  CAS  Google Scholar 

  • Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf A 187–188:469–481

    Article  Google Scholar 

  • Gibson PW, Lee C, Ko F et al (2007) Application of nanofiber technology to nonwoven thermal insulation. J Eng Fibers Fabr 2:32–40

    Google Scholar 

  • Gopal R, Kaur S, Ma Z et al (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

    Article  CAS  Google Scholar 

  • Gupta P, Nayak KK (2015) Compatibility study of alginate/keratin blend for biopolymer development. J Appl Biomater Funct Mater 13:e332–e339

    CAS  PubMed  Google Scholar 

  • Hamasaki S, Tachibana A, Tada D et al (2008) Fabrication of highly porous keratin sponges by freeze-drying in the presence of calcium alginate beads. J Mater Sci Eng C 28:1250–1254

    Article  CAS  Google Scholar 

  • Hameed N, Guo Q (2010) Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 17:803–813

    Article  CAS  Google Scholar 

  • Ham TR, Lee RT, Han S et al (2016) Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17:225–236

    Article  CAS  PubMed  Google Scholar 

  • Han S, Hama TR, Haque S et al (2015) Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 23:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris M, Brown AE (1947) Natural and synthetic protein fibers. Tex Res J 17:323–330

    Article  Google Scholar 

  • Heikkilä P, Sipilä A, Peltola M et al (2007) Electrospun PA-66 coating on textile surfaces. Tex Res J 77:864–870

    Article  CAS  Google Scholar 

  • He M, Zhang B, Dou Y et al (2017) Blend modification of feather keratin-based films using sodium alginate. J Appl Polym Sci 2017:44680–44688

    Google Scholar 

  • Hengchang M, Zhikang B, Guobin H et al (2013) Nanoparticulate palladium catalyst stabilized by supported on feather keratin for Suzuki coupling reaction. Chin J Catal 34:578–584

    Article  CAS  Google Scholar 

  • Hermanson GT (2013a) Chapter 3—the reactions of bioconjugation. In: Audet J (ed) Bioconjugate techniques, 3rd edn. Elsevier, Inc., pp 229–258

    Google Scholar 

  • Hermanson GT (2013b) Chapter 24—bioconjugation in the study of protein interactions. In: Audet J (ed) Bioconjugate techniques, 3rd edn. Elsevier, Inc., pp 989–1016

    Google Scholar 

  • Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31:585–593

    Article  CAS  PubMed  Google Scholar 

  • Hirao Y, Ohkawa K, Yamamoto H et al (2005) A novel human hair protein fiber prepared by watery hybridization spinning. Macromol Mater Eng 290:165–171

    Article  CAS  Google Scholar 

  • Hoffman EA, Frey BL, Smith LM et al (2015) Formaldehyde crosslinking: a tool for the study of chromatin complexes. J Biol Chem 290:26404–26411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homonoff E (2008) Nanofibrillated fibers: opening new markets to nano-fibre usage. Int Fibers J 23:22–24

    Google Scholar 

  • Idris A, Vijayaraghavan R, Rana UA et al (2013) Dissolution of feather keratin in ionic liquids. Green Chem 15:525–534

    Article  CAS  Google Scholar 

  • Iridag Y, Kazanci M (2006) Preparation and characterization of Bombyx mori silk fibroin and wool keratin. J Appl Polym Sci 100:4260–4264

    Article  CAS  Google Scholar 

  • Kakkar P, Madhan B (2016) Fabrication of keratin-silica hydrogel for biomedical applications. J Mater Sci Eng C 66:178–184

    Article  CAS  Google Scholar 

  • Kar P, Misra M (2004) Use of keratin fiber for separation of heavy metals from water. J Chem Technol Biotechnol 79:1313–1319

    Article  CAS  Google Scholar 

  • Katoh K, Shibayama M, Tanabe T et al (2004) Preparation and properties of keratin–poly(vinyl alcohol) blend fiber. J Appl Polym Sci 91:756–762

    Article  CAS  Google Scholar 

  • Khosa MA, Ullah A (2014) In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. J Hazard Mater 278:360–371

    Article  CAS  PubMed  Google Scholar 

  • Ki CS, Gang EH, Um IC et al (2007) Nanofibous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membr Sci 302:20–26

    Article  CAS  Google Scholar 

  • Kilic A, Oruc F, Demir A (2008) Effects of polarity on electrospinning process. Tex Res J 78:532–539

    Article  CAS  Google Scholar 

  • Kim BS, Park KE, Park WH et al (2013) Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation. Biomed Mater 8:1–9

    CAS  Google Scholar 

  • Kim G, Cho YS, Kim WD (2006) Stability analysis for multi-jets electrospin-ning process modified with a cylindrical electrode. Eur Polym J 42:2031–2038

    Article  CAS  Google Scholar 

  • Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B 14:61–86

    Article  CAS  Google Scholar 

  • Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16:1151–1170

    Article  CAS  Google Scholar 

  • Li J, Li Y, Li L et al (2009) Fabrication and degradation of poly(L-lactic acid) scaffolds with wool keratin. Compos. B 40:664–667

    Article  CAS  Google Scholar 

  • Li J, Yu LH, Fan J et al (2013) Fabrication of three-dimensional porous keratin/PEO biological scaffolds. Adv Mater Res 821:1035–1038

    Google Scholar 

  • Li L, Frey MW, Green TB (2006) Modification of air filter media with nylon-6 nanofibers. J Eng Fibers Fabr 1:1–24

    Google Scholar 

  • Li Q, Zhu L, Liu R et al (2012) Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery. J Mater Chem 22:19964–19973

    Article  CAS  Google Scholar 

  • Li S, Yang XH (2014) Fabrication and characterization of electrospun wool keratin/poly(vinyl alcohol) blend nanofibers. Adv Mater Sci Eng 2014:1–7

    Google Scholar 

  • Li W, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res, Part B 60:613–621

    Article  CAS  Google Scholar 

  • Li Y, Wang Y, Ye J et al (2016) Fabrication of poly(ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering. J Mater Sci Eng C 68:177–183

    Article  CAS  Google Scholar 

  • Liu Y, Yu X, Li J et al (2015) Fabrication and properties of high-content keratin/poly(ethylene oxide) blend nanofibers using two-step cross-linking process. J Nanomater 2015:1–7

    Google Scholar 

  • Ma B, Qiao X, Hou X et al (2016) Pure keratin membrane and fibers from chicken feather. Int J Biol Macromol 89:614–621

    Article  CAS  PubMed  Google Scholar 

  • Maclaren JA, Milligan B (1981) Wool science: the chemical reactivity of the wool fibre. Science Press, Marrickville, Australia, pp 109–127

    Google Scholar 

  • Manrique-Juárez MD, Martínez-Hernández AL, Olea-Mejía OF et al (2013) Polyurethane-keratin membranes: structural changes by isocyanate and pH, and the repercussion on Cr(VI) removal. Int J Polym Sci 2013:1–12

    Article  CAS  Google Scholar 

  • Martelli SM, Borges Laurindo J (2012) Chicken feather keratin films plasticized with polyethylene glycol. Int J Polym Mater 61:17–29

    Article  CAS  Google Scholar 

  • Martelli SM, Moore G, Paes SS et al (2006a) Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT 39:292–301

    Article  CAS  Google Scholar 

  • Martelli SM, Plácido Moore GR, Borges Laurindo J (2006b) Mechanical properties, water vapor permeability and water affinity of feather keratin films plasticized with sorbitol. J Polym Environ 14:215–222

    Article  CAS  Google Scholar 

  • McCurry J (1996) Fibres, yarns and fabrics. Tex World 28

    Google Scholar 

  • Montefusco F (2005) The use of nonwovens in air filtration. Filtr Sep 42:30–31

    Article  Google Scholar 

  • Na Ayutthaya SI, Tanpichai S, Sangkhun W et al (2016) Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber. Int J Biol Macromol 85:585–595

    Article  CAS  Google Scholar 

  • Na Ayutthaya SI, Tanpichai S, Wootthikanokkhan J (2015) Keratin extracted from chicken feather waste: extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. J Polym Environ 23:506–516

    Article  CAS  Google Scholar 

  • Na Ayutthaya SI, Wootthikanokkhan J (2013) Extraction of keratin from chicken feather and electrospinning of the keratin/PLA blends. Adv Mater Res 747:711–714

    Article  CAS  Google Scholar 

  • Nakata R, Osumi Y, Miyagawa S et al (2015) Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability. J Biosci Bioeng 120:111–116

    Article  CAS  PubMed  Google Scholar 

  • Nakata R, Tachibana A, Tanabe T (2014) Preparation of keratin hydrogel/hydroxyapatite composite and its evaluation as a controlled drug release carrier. J Mater Sci Eng C 41:59–64

    Article  CAS  Google Scholar 

  • Nayak KK, Gupta P (2017) Study of the keratin-based therapeutic dermal patches for the delivery of bioactive molecules for wound treatment. J Mater Sci Eng C 77:1088–1097

    Article  CAS  Google Scholar 

  • Obach RS, Kalgutkar AS (2018) 1.15–Reactive electrophiles and metabolic activation. In: McQuieen CA (ed) Reference module in biomedical sciences, from Comprehensive Toxicology, 3rd edn. Elsevier, Inc., pp 295–331

    Google Scholar 

  • Ozaki Y, Takagi Y, Mori H et al (2014) Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis. J Mater Sci Eng C 42:146–154

    Article  CAS  Google Scholar 

  • Pace LA, Plate JF, Smith TL et al (2013) The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 34:5907–5914

    Article  CAS  PubMed  Google Scholar 

  • Patrucco A, Cristofaro F, Simionati M et al (2016) Wool fibril sponges with perspective biomedical applications. J Mater Sci Eng C 61:42–50

    Article  CAS  Google Scholar 

  • Park M, Kima BS, Shin HK et al (2013) Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. J Mater Sci Eng C 33:5051–5057

    Article  CAS  Google Scholar 

  • Park M, Shin HK, Panthi G et al (2015) Novel preparation and characterization of human hair-based nanofibers using electrospinning process. Int J Biol Macromol 76:45–48

    Article  CAS  PubMed  Google Scholar 

  • Pedram Rad Z, Tavanai H, Moradi AR (2012) Production of feather keratin nanopowder through electrospraying. J Aerosol Sci 51:49–56

    Article  CAS  Google Scholar 

  • Perez MA, Swan D, Louks JW (2000) Microfibers and method of making. US Patent 6,110,588, 29 Aug 2000

    Google Scholar 

  • Peyton CC, Keys T, Tomblyn S et al (2012) Halofuginone infused keratin hydrogel attenuates adhesions in a rodent cecal abrasion model. J Surg Res 178:545–552

    Article  CAS  PubMed  Google Scholar 

  • Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  CAS  PubMed  Google Scholar 

  • Placido Moore GR, Martelli SM, Gandolfo C et al (2006) Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocolloids 20:975–982

    Article  CAS  Google Scholar 

  • Placone JK, Navarro J, Laslo GW et al (2017) Development and characterization of a 3D printed, keratin-based hydrogel. Ann Biomed Eng 45:237–248

    Article  PubMed  Google Scholar 

  • Poole AJ, Church JS (2015) The effects of physical and chemical treatments on Na2S produced feather keratin films. Int J Biol Macromol 73:99–108

    Article  CAS  PubMed  Google Scholar 

  • Poole AJ, Church JS, Huson MG (2008) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–8

    Article  CAS  Google Scholar 

  • Posati T, Sotgiu G, Varchi G et al (2016) Developing keratin sponges with tunable morphologies and controlled antioxidant properties induced by doping with polydopamine (PDA) nanoparticles. Mater Des 110:475–484

    Article  CAS  Google Scholar 

  • Pourdeyhimi B, Fedorova NV, Sharp SR (2006) High strength, durable micro & nano-fiber fabrics produced by fibrillating biocomponent islands in the sea fibers. US Patent 2006/0292355, 28 Dec 2006

    Google Scholar 

  • Puglia D, Ceccolini R, Fortunati et al (2015) Effect of processing techniques on the 3D microstructure of poly (L-lactic acid) scaffolds reinforced with wool keratin from different sources. J Appl Polym Sci 132:42890

    Article  CAS  Google Scholar 

  • Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102:1285–1290

    Article  CAS  Google Scholar 

  • Ramakrishnan N, Sharma S, Gupta A et al (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50

    Article  CAS  Google Scholar 

  • Reddy N, Jiang Q, Jin E et al (2013) Bio-thermoplastics from grafted chicken feathers for potential biomedical applications. Colloids Surf B 100:51–58

    Article  CAS  Google Scholar 

  • Reichl S (2009) Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30:6854–6866

    Article  CAS  PubMed  Google Scholar 

  • Reichl S, Borrelli M, Geerling G (2011) Keratin films for ocular surface reconstruction. Biomaterials 32:3375–3386

    Article  CAS  PubMed  Google Scholar 

  • Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425

    Article  CAS  Google Scholar 

  • Richter JR, de Guzman RC, Greengauz-Roberts OK et al (2012) Structure–property relationships of meta-kerateine biomaterials derived from human hair. Acta Biomater 8:274–281

    Article  CAS  PubMed  Google Scholar 

  • Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999–1014

    Article  PubMed Central  Google Scholar 

  • Salazar NA, Alvarez C, Orrego CE (2018) Optimization of freezing parameters for freeze-drying mango (Mangifera indica L.) slices. Drying Technol 36:192–204

    Article  CAS  Google Scholar 

  • Sanchez Ramirez DO, Carletto RA, Tonetti C et al (2017) Wool keratin film plasticized by citric acid for food packaging. Food Packag Shelf Life 12:100–106

    Article  Google Scholar 

  • Saucedo-Rivalcoba V, Martínez-Hernández AL, Martínez-Barrera G et al (2011a) Chicken feathers keratin)/polyurethane membranes. Appl Phys A Mater Sci Process 104:219–228

    Article  CAS  Google Scholar 

  • Saucedo-Rivalcoba V, Martínez-Hernández AL, Martínez-Barrera G et al (2011b) Removal of hexavalent chromium from water by polyurethane–keratin hybrid membranes. Water Air Soil Pollut 218:557–571

    Article  CAS  Google Scholar 

  • Schmidt FW, Waters RM, Gassner G (1998) Chemical engineering news, p 23

    Google Scholar 

  • Schrooyen PMM, Dijkstra PJ, Oberthür RC et al (2000) Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J Agric Food Chem 48:4326–4334

    Article  CAS  PubMed  Google Scholar 

  • Schrooyen PMM, Dijkstra PJ, Oberthür RC et al (2001) Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films. J Agric Food Chem 49:221–230

    Article  CAS  PubMed  Google Scholar 

  • Sekimoto Y, Okiharu T, Nakajima H et al (2013) Removal of Pb(II) from water using keratin colloidal solution obtained from wool. Environ Sci Pollut Res 20:6531–6538

    Article  CAS  Google Scholar 

  • Sharma S, Gupta A, Kumar A et al (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Techn Environ Policy 1–11

    Google Scholar 

  • Shen D, Wang X, Zhang L et al (2011) The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair. Biomaterials 32:9290–9299

    Article  CAS  PubMed  Google Scholar 

  • Shin C, Chase GG, Reneker DH (2005) The effect of nanofibers on liquid–liquid coalescence filter performance. AIChE J 51:3109–3113

    Article  CAS  Google Scholar 

  • Shin YM, Hohman MM, Brenner MP et al (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42:9955–9967

    Article  CAS  Google Scholar 

  • Siemann U (2005) Solvent cast technology—a versatile tool for thin film production. Prog Colloid Polym Sci 130:1–14

    CAS  Google Scholar 

  • Siller-Jackson AJ, Mark Van Dyke ME, Timmons SF et al (2003) Keratin-based powder and hydrogel for pharmaceutical applications. US Patent 6,544,548, 8 Apr 2003

    Google Scholar 

  • Sill TJ, Von Recum HA (2008) Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Lin YT, Chaung WL et al (2017) A new biodegradable gate dielectric material based on keratin protein for organic thin film transistors. Org Electron 44:198–209

    Article  CAS  Google Scholar 

  • Singh R, Sarker B, Silva R et al (2016) Evaluation of hydrogel matrices for vessel bioplotting: vascular cell growth and viability. J Biomed Mater Res, Part A 104A:577–585

    Article  CAS  Google Scholar 

  • Sionkowska A, Skopinska-Wiśniewska J, Kozłowska J et al (2011) Photochemical behaviour of hydrolysed keratin. Int J Cosmet Sci 33:503–508

    Article  CAS  PubMed  Google Scholar 

  • Son WK, Youk JH, Lee TS et al (2004) The effects of solution proper-ties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45:2959–2966

    Article  CAS  Google Scholar 

  • Srinivasan B, Kumar R, Shanmugam K et al (2010) Porous keratin scaffold–promising biomaterial for tissue engineering and drug delivery. J Biomed Mater Res, Part B 92B:5–12

    Article  CAS  Google Scholar 

  • Subbiah T, Bhat GS, Tock RW et al (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569

    Article  CAS  Google Scholar 

  • Tachibana A, Furuta Y, Takeshima H et al (2002) Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol 93:165–170

    Article  CAS  PubMed  Google Scholar 

  • Tachibana A, Kaneko S, Tanabe T et al (2005) Rapid fabrication of keratin–hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 26:297–302

    Article  CAS  PubMed  Google Scholar 

  • Tachibana A, Nishikawa Y, Nishino M et al (2006) Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng 102:425–429

    Article  CAS  PubMed  Google Scholar 

  • Taddei P, Monti P, Freddi G et al (2003) Binding of Co(II) and Cu(II) cations to chemically modified wool fibres: an IR investigation. J Mol Struct 650:105–113

    Article  CAS  Google Scholar 

  • Tanabe T, Okitsu N, Tachibana A et al (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23:817–825

    Article  CAS  PubMed  Google Scholar 

  • Tanabe T, Okitsu N, Yamauchi K (2004) Fabrication and characterization of chemically crosslinked keratin films. J Mater Sci Eng C 24:441–446

    Article  CAS  Google Scholar 

  • Thermo Scientific (2018). Easy molecular bonding, crosslinking technology–Reactivity chemistries, applications and structure references. In: Thermo scientific crosslinking technical handbook. Thermo Scientific, pp 1–56. https://tools.thermofisher.com/content/sfs/brochures/1602163-Crosslinking-Reagents-Handbook.pdf. Accessed 15 Oct 2018

  • Theron SA, Yarin AL, Zussman E et al (2005) Multiple jets in electrospinning: experiment and modelling. Polymer 46:2889–2899

    Article  CAS  Google Scholar 

  • Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030

    Article  CAS  Google Scholar 

  • Thonpho A, Songeon W, Srihanam P (2016) Effect of cross-linked agents on keratin films property. Int J GEOMATE 11:2866–2869

    Google Scholar 

  • Tomaselli S, Sanchez Ramirez DO, Carletto RA et al (2016) Electrospun lipid binding proteins composite nanofibers with antibacterial properties. Macromol Biosci 2016:1–6

    Google Scholar 

  • Tomaszewski W, Szadkowski M (2005) Investigation of electrospinning with the use of a multi-jet electrospinning head. Fibres Text East Eur 52:22–26

    Google Scholar 

  • Tonin C, Aluigi A, Vineis C et al (2007) Thermal and structural characterization of poly(ethylene-oxide)/keratin blend films. J Therm Anal Calorim 89:601–608

    Article  CAS  Google Scholar 

  • Tsai PP, Schreuder-Gibson H, Gibson P (2002) Different electrostatic methods for making electret filters. J Electrost 54:333–341

    Article  CAS  Google Scholar 

  • Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B 23:877–894

    Article  CAS  Google Scholar 

  • Tu H, Yu W, Duan L (2016) Structural studies and macro-performances of hydroxyapatite-reinforced keratin thin films for biological applications. J Mater Sci 51:9573–9588

    Article  CAS  Google Scholar 

  • Varabhas JS, Chase GG, Reneker DH (2008) Electrospun nanofibers froma porous hollow tube. Polymer 49:4226–4229

    Article  CAS  Google Scholar 

  • Vasconcelos A, Cavaco-Paulo A (2013) The use of keratin in biomedical applications. Curr Drug Targets 14:612–619

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos A, Freddi G, Cavaco-Paulo A (2008) Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Varesano A, Aluigi A, Vineis C et al (2008) Study on the shear viscosity behavior of keratin/PEO blends for nanofibre electrospinning. J Polym Sci Part B Polym Phy 46:1193–1201

    Article  CAS  Google Scholar 

  • Varesano A, Carletto RA, Mazzuchetti G (2009) Experimental investigations on the multi-jet electrospinning process. J Mater Process Technol 209:5178–5185

    Article  CAS  Google Scholar 

  • Varesano A, Vineis C, Tonetti C et al (2014) Chemical and physical modifications of electrospun keratin nanofibers induced by heating treatments. J Appl Polym Sci 2014:1–7

    Google Scholar 

  • Varesano A, Vineis C, Tonetti C et al (2015) Multifunctional hybrid nanocomposite nanofibers produced by colloid electrospinning from water solutions. Curr Nanosci 11:41–48

    Article  CAS  Google Scholar 

  • Verma V, Verma P, Ray P et al (2008) Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater 3:1–12

    Article  CAS  Google Scholar 

  • Wang J, Hao S, Luo T et al (2016) Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. J Mater Sci Eng C 68:768–773

    Article  CAS  Google Scholar 

  • Wang J, Hao S, Luo T et al (2017) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf B 149:341–350

    Article  CAS  Google Scholar 

  • Wawro D, Stęplewski W, Wrześniewska-Tosik K (2009) Preparation of keratin-modified chitosan fibres. Fibres Text East Eur 17:37–42

    CAS  Google Scholar 

  • Wormell RL, Happey F (1949) Regenerated keratin fibres. Nature 163:18

    Article  CAS  PubMed  Google Scholar 

  • Wortmann G, Zwiener G, Sweredjiuk R et al (1999) Sorption of indoor air pollutants by sheep’s wool: formaldehyde as an example. In: Proceedings of the international wool textile organization, Florence, 1999

    Google Scholar 

  • Wrześniewska-Tosik K, Adamiec J (2007) Biocomposites with a content of keratin from chicken feathers. Fibres Tex East Eur 15:106–112

    Google Scholar 

  • Wrześniewska-Tosik K, Wawro D, Ratajska M et al (2007a) Novel composites with feather keratin. Fibres Tex East Eur 15:157–162

    Google Scholar 

  • Wrześniewska-Tosik K, Wawro D, Stęplewski W et al (2007b) Fibrous products with keratin content. Fibres Text East Eur 15:30–35

    Google Scholar 

  • Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibres. Green Chem 7:606–608

    Article  CAS  Google Scholar 

  • Xu H, Cai S, Xu L et al (2014a) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30:8461–8470

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Ma Z, Yang Y (2014b) Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin. J Mater Sci 49:7513–7521

    Article  CAS  Google Scholar 

  • Xu H, Yang Y (2014) Controlled de-cross-linking and disentanglement of feather keratin for fiber preparation via a novel process. ACS Sustainable Chem Eng 2:1404–1410

    Article  CAS  Google Scholar 

  • Xu S, Sang L, Zhang Y et al (2013) Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration. J Mater Sci Eng C 33:648–655

    Article  CAS  Google Scholar 

  • Yanga G, Yao Y, Wang X (2018) Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. J Mater Sci Eng C 83:1–8

    Article  CAS  Google Scholar 

  • Yang Q, Dou F, Liang B et al (2005) Studies of cross-linking reaction on chitosan fiber with glyoxal. Carbohydr Polym 59:205–210

    Article  CAS  Google Scholar 

  • Yang X, Zhang H, Yuan X et al (2009) Wool keratin: a novel building block for layer-by-layer self-assembly. J Colloid Interface Sci 336:756–760

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi K, Yamauchi A, Kusunoki T et al (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res, Part B 31:439–444

    Article  CAS  Google Scholar 

  • Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846

    Article  CAS  Google Scholar 

  • Yao CH, Lee CY, Huang CH et al (2017) Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. J Mater Sci Eng C 79:533–540

    Article  CAS  Google Scholar 

  • Yoon K, Kim K, Wang X et al (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47:2434–2441

    Article  CAS  Google Scholar 

  • Yuan J, Geng J, Xing Z et al (2012) Novel wound dressing based on nano fibrous PHBV–keratin mats. J Tissue Eng Regener Med 9:1027–1035

    Article  CAS  Google Scholar 

  • Yuan J, Shen J, Kang IK (2008) Fabrication of protein-doped PLA composite nanofibrous scaffolds for tissue engineering. Polym Int 57:1188–1193

    Article  CAS  Google Scholar 

  • Yuan J, Xing ZC, Park SW et al (2009) Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications. Macromol Res 17:850–855

    Article  CAS  Google Scholar 

  • Yue K, Liu Y, Byambaa B et al (2018) Visible light crosslinkable human hair keratin hydrogels. Bioeng Transl Med 3:37–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun KM, Hogan CJ Jr, Matsubayashi Y et al (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62:4751–4759

    Article  CAS  Google Scholar 

  • Zhang H, Liu J (2013) Electrospun poly(lactic-coglycolic acid)/wool keratin fibrous composite scaffolds potential for bone tissue engineering applications. J Bioact Compat Polym 28:141–153

    Article  CAS  Google Scholar 

  • Zhang H, Wang J, Ma H et al (2016) Bilayered PLGA/wool keratin composite membranes support periodontal regeneration in beagle dogs. ACS Biomater Sci Eng 2:2162–2175

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yub Y, Cuia S (2011) Multilayer fluorescent thin films based on keratin-stabilized silver nanoparticles. Colloids Surf A 384:501–506

    Article  CAS  Google Scholar 

  • Zhang S (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–339

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu PC, Edgren D (2010) Crosslinking reaction of poly(vinyl alcohol) with glyoxal. J Polym Res 17:725–730

    Article  CAS  Google Scholar 

  • Zhao X, Lui YS, Chuen Choo CK et al (2015) Calcium phosphate coated keratin–PCL scaffolds for potential bone tissue regeneration. J Mater Sci Eng C 49:746–753

    Article  CAS  Google Scholar 

  • Zhuang Y, Wu X, Cao Z et al (2013) Preparation and characterization of sponge film made from feathers. J Mater Sci Eng C 33:4732–4738

    Article  CAS  Google Scholar 

  • Zhu H, Li R, Wu X et al (2017) Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting. Eur Polym J 86:154–161

    Article  CAS  Google Scholar 

  • Zhou LT, Yang G, Yang XX et al (2014) Preparation of regenerated keratin sponge from waste feathers by a simple method and its potential use for oil adsorption. Environ Sci Pollut Res 21:5730–5736

    Article  CAS  Google Scholar 

  • Zoccola M, Aluigi A, Vineis C et al (2008) Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends. Biomacromolecules 9:2819–2825

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Omar Sanchez Ramirez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanchez Ramirez, D.O., Carletto, R.A., Truffa Giachet, F. (2019). Keratin Processing. In: Sharma, S., Kumar, A. (eds) Keratin as a Protein Biopolymer. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-02901-2_4

Download citation

Publish with us

Policies and ethics