Skip to main content

Bandwidth Estimation for Admission Control in MANET: Review and Conceptual MANET Admission Control Framework

  • Conference paper
  • First Online:
Book cover Proceedings of the Future Technologies Conference (FTC) 2018 (FTC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 881))

Included in the following conference series:

Abstract

Mobile ad-hoc network (MANET) is one of the main technologies for the next generation wireless networking because of the positive impact it poses over other wireless networks having undergone rapid progress, which has inspired many applications. However, providing quality of service (QoS) assurance to MANET is hard because of the unpredictable nature of the wireless medium, contention problem amongst the channel, mobility problem and lack of central co-ordinator. Admission control is therefore seen as one of the methods for providing QoS. Admission control aim at estimating the network resource states and decides whether to admit a session without assuring more resources bandwidth space than what is available to avoid the violation of any rules that has been previously made. Some recent solution considered the MAC layer back-off impact due to collision as well as the non-synchronization between the sender and receiver when estimating the available bandwidth. None of the previous work proposed a technique that sends a HELLO packet to its one-hop neighbours which further aggregates to the rest of the nodes to retrieve the available bandwidth on a carrier sensing region, in order to limit the impact of additional overhead of the carrier sensing multiple access with collision avoidance (CSMA/CA). Also, none of the existing solution has properly addressed the channel idle time dependency between the sending node and the receiving node by differentiating the BUSY state from the SENSE BUSY states and the IDLE state caused by an empty queue. This paper, therefore reviews the bandwidth estimation techniques for admission control for MANET. The bandwidth estimation techniques for admission control have been categorized into two: active and passive estimation. An outline of each technique has been discussed as well as the proposed conceptual framework. The contribution as identified in this research work is the proposal of conceptual framework that adapts the following into the bandwidth estimation for admission control in MANET: (1) HELLO packet advertisement to one hop which further aggregates to retrieve the available bandwidth on the carrier sensing region, (2) Considering the channel idle time measurement by differentiating the channel busy state from channel sensing state and regarding an empty queue as an idle state. Future research directions are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanzo, L., Tafazolli, R.: Admission control schemes for 802.11-based multi-hop mobile ad hoc networks: a survey. IEEE Commun. Surv. Tutor. 11(4), 78–108 (2009)

    Article  Google Scholar 

  2. Chaudhari, S., Biradar, R.C.: Available bandwidth estimation using collision probability, idle period synchronization and waiting time. Wirel. Pers. Commun. Int. J. 83, 597–621 (2015)

    Article  Google Scholar 

  3. Lal, C., Laxmi, V., Gaur, M.: Bandwidth-aware routing and admission control for efficient video streaming over MANETs. 21, 95–114 (2015)

    Google Scholar 

  4. Kaur, P., Singh, R.: A systematic approach for congestion control in wireless ad hoc network using Opnet. Int. J. Comput. Appl. 67(22), 1–8 (2013)

    Article  Google Scholar 

  5. Khoukhi, L., Badis, H., Merghem-Boulahia, L., Esseghir, M.: Admission Control in Wireless ad hoc networks. EURASIP J. Wirel. Commun. Netw. (2013)

    Google Scholar 

  6. Arsan, T.: Review of bandwidth estimation tools and application to bandwidth adaptive video streaming. In: 9th International Conference on High Capacity Optical Networks and Enabling Technologies, pp. 152–156 (2012)

    Google Scholar 

  7. Li, M., Wu, Y.-L., Chang, C.-R.: Available bandwidth estimation for the network paths with multiple tight links and bursty traffic. J. Netw. Comput. Appl. 36(1), 353–367 (2013)

    Article  Google Scholar 

  8. Park, H. J., Roh, B.-H.: Accurate passive bandwidth estimation (APBE) in IEEE 802.11 wireless LANs. In: Proceedings of the 5th International Conference on Ubiquitous Information Technologies and Applications, pp. 1–4 (2010)

    Google Scholar 

  9. Tursunova, S., Inoyatov, K., Kim, Y.-T.: Cognitive passive estimation of available bandwidth (cPEAB) in overlapped IEEE 802.11 WiFi WLANs. In: IEEE Network Operations and Management Symposium, pp. 448–454 (2010)

    Google Scholar 

  10. Hei, X., Bensaou, B., Tsang, D.H.K.: Model-based end-to-end available bandwidth inference using queueing analysis. Comput. Netw. 50(12), 1916–1937 (2006)

    Article  Google Scholar 

  11. Barzuza, T., Ben Zedeff, S., Modai, O., Vainbrand, L., Wiener, Y., Yellin, E.: TREND: a dynamic bandwidth estimation and adaptation algorithm for real-time video calling. In: 18th International Packet Video Workshop, pp. 126–133 (2010)

    Google Scholar 

  12. Ali, R., Zafar, F.: Bandwidth estimation in mobile ad-hoc network (MANET). Int. J. Comput. Sci. 8(5), 331–337 (2011)

    Google Scholar 

  13. Wang, H., Lee, K., Li, E.: Timing is Everything: Accurate, Minimum Overhead. Available Bandwidth Estimation in High-speed Wired Networks, pp. 407–420 (2014)

    Google Scholar 

  14. Croce, D., Leonardi, E.: Large-scale available bandwidth measurements. Interference in current techniques. IEEE Trans. Netw. Serv. Manag. 8(4), 361–374 (2011)

    Article  Google Scholar 

  15. Xiao, Y., Chen, S., Li, X., Li, Y.: A new available bandwidth measurement method based on self-loading periodic streams. In: International Conference on IEEE Wireless Communications, Networking and Mobile Computing, WiCom 2007, 21–25 September 2007, pp. 1904–1907 (2007)

    Google Scholar 

  16. Ibrahim, M. F., Taib, M.N.: The deployment of end-to-end available bandwidth estimation mechanism in web-based application. In: IEEE Symposium on Industrial Electronics and Applications, pp. 201–206 (2010)

    Google Scholar 

  17. Yuan, Z., Venkataraman, H., Muntean, G.M.: iBE: a novel bandwidth estimation algorithm for multimedia services over IEEE 802.11 wireless networks. In: Proceedings of the 12th IFIP/IEEE International Conference on Management of Multimedia and Mobile Networks and Services: Wired–Wireless Multimedia Networks and Services Management, vol. 5842, pp. 69–80 (2009)

    Google Scholar 

  18. Prasad, R.S., Murray, M., Dovrolis, C., Claffy, K.C.: Bandwidth estimation: metrics. IEEE Netw. Meas. Tech Tools 17(6), 27–35 (2003)

    Google Scholar 

  19. Delphinanto, A., Koonen, T., Zhang, S., den Hartog, F.: Path capacity estimation in heterogeneous, best-effort, small-scale IP networks. In: IEEE 35th Conference on Local Computer Networks, pp. 1076–1083 (2010)

    Google Scholar 

  20. Pasztor, A., Veitch, D.: Active probing using packet quartets. In: Proceedings of the 2nd ACM SIGCOMM Internet Measurement Workshop, pp. 293–305 (2002)

    Google Scholar 

  21. Downey, A.B.: Clink: A tool for estimating internet link characteristics (1999). http://rocky.wellesley.edu/downey/clink/

  22. Downey, A.B.: Using pathchar to estimate internet link characteristics. In: ACM SIGCOMM Computer Communication Review, vol. 29, no. 4, pp. 241–250. ACM (1999)

    Google Scholar 

  23. Lai, K., Baker, M.: Measuring link bandwidths using a deterministic model of packet delay. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 283–294 (2000)

    Google Scholar 

  24. Mah, B.A.: Pchar: A tool for measuring internet path characteristics (2001). http://www.employees.org/bmah/Software/pchar/

  25. Turrubiartes, M., Torres, D., Angulo, M., Munoz, D.: Analysis of IP network path capacity estimation using a variable packet size method. In: 15th International Conference on Electronics, Communications and Computers, pp. 177–182 (2005)

    Google Scholar 

  26. Guerrero, C.D., Labrador, M.A.: Traceband: a fast, low overhead and accurate tool for available bandwidth estimation and monitoring. Comput. Netw. 54(6), 977–990 (2010)

    Article  Google Scholar 

  27. Obara, H., Koseki, S., Selin, P.: Packet train pair: a fast and efficient technique for measuring available bandwidth in the internet. In: SICE Annual Conference, pp. 1833–1836 (2012)

    Google Scholar 

  28. Selin, P., Hasegawa, K., Obara, H.: Available bandwidth measurement technique using impulsive packet probing for monitoring end-to-end service quality on the internet. In: 17th Asia- Pacific Conference on Communications, pp. 518–523 (2011)

    Google Scholar 

  29. Hu, Z., Zhang, D., Zhu, A., Chen, Z., Zhou, H.: SLDRT: a measurement technique for available bandwidth on multi-hop path with bursty cross traffic. Comput. Netw. 56(14), 3247–3260 (2012)

    Article  Google Scholar 

  30. Thouin, F., Coates, M., Rabbat, M.: Large scale probabilistic available bandwidth estimation. Comput. Netw. 55(9), 2065–2078 (2011)

    Article  Google Scholar 

  31. Li, M., Chang, C.-R.: A two-way available bandwidth estimation scheme for multimedia streaming networks adopting scalable video coding. In: IEEE Sarnoff Symposium, pp. 1–6 (2009)

    Google Scholar 

  32. Lao, L., Dovrolis, C., Sanadidi, M.Y.: The probe gap model can underestimate the available bandwidth of multihop paths. ACM SIGCOMM Comput. Commun. Rev. 36(5), 29–34 (2006)

    Article  Google Scholar 

  33. Paul, A., Tachibana, A., Hasegawa, T.: An enhanced available bandwidth estimation technique for an end-to-end network path. IEEE Trans. Netw. Serv. Manag. 13(4), 768–781 (2016)

    Article  Google Scholar 

  34. Paul, A., Tachibana, A., Hasegawa, T.: Implementation Design of Available Bandwidth Measurement Scheme: A Proxy based Approach, pp. 257–262. ACM (2016)

    Google Scholar 

  35. Li, M., Claypool, M., Kinicki, R.: WBest: a bandwidth estimation tool for IEEE 802.11 wireless networks. In: Proceedings of the 33rd IEEE Conference on Local Computer Networks, Montreal, Canada, pp. 374–381 (2008)

    Google Scholar 

  36. Yang, T., Jin, Y., Chen, Y., Jin, Y.: RT-WABest: a novel end-to-end bandwidth estimation tool in IEEE 802.11 wireless network. Int. J. Distrib. Sens. Netw. 13(2) (2017)

    Article  MathSciNet  Google Scholar 

  37. Hu, N., Steenkiste, P.: Estimating available bandwidth using packet pair probing (No. CMUCS- 02-166). School of Computer Science, Carnegie-Mellon University, Pittsburgh (2002)

    Google Scholar 

  38. Hu, N., Steenkiste, P.: Evaluation and characterization of available bandwidth probing techniques. IEEE J. Sel. Areas Commun. 21(6), 879–894 (2003)

    Article  Google Scholar 

  39. Tunali, T., Anar, K.: Adaptive available bandwidth estimation for internet video streaming. Signal Process. Image Commun. 21(3), 217–234 (2006)

    Article  Google Scholar 

  40. Sedighizad, M., Seyfe, B., Navaie, K.: MR-BART: multi-rate available bandwidth estimation in real-time. J. Netw.Comput. Appl. 35(2), 731–742 (2012)

    Article  Google Scholar 

  41. Nam, S.Y., Kim, S., Park, W.: Analysis of minimal backlogging-based available bandwidth estimation mechanism. J. Comput. Commun. 35(4), 431–443 (2012)

    Article  Google Scholar 

  42. Calafate, C.T., Manzoni, P., Malumbres, M.P.: Supporting soft real-time services in MANETs using distributed admission control and IEEE 802.11e technology. In: 10th IEEE Symposium on Computers and Communications, pp. 217–222 (2005)

    Google Scholar 

  43. Hoang, V. D., Shao, Z., Fujise, M.: A new solution to estimate the available bandwidth in MANETs. In: IEEE 63rd Vehicular Technology Conference, vol. 2, pp. 653–657 (2006)

    Google Scholar 

  44. Ekelin, S., Nilsson, M., Hartikainen, E., Johnsson, A., Mngs, J.-E., Melander, B., et al.: Realtime measurement of end-to-end available bandwidth using Kalman filtering. In: Proceedings of the 10th IEEE/IFIP Network Operations and Management Symposium (2006)

    Google Scholar 

  45. Bergfeldt, E., Ekelin, S., Karlsson, J.M.: Real-time available-bandwidth estimation using filtering and change detection. Comput. Netw. 53(15), 2617–2645 (2009)

    Article  Google Scholar 

  46. Lin, H., Liu, M., Zhou, A., Liu, H., Li, Z.C.: A novel hybrid probing technique for end-to-end available bandwidth estimation. In: IEEE 35th Conference on Local Computer Networks, pp. 400–407 (2010)

    Google Scholar 

  47. Farooq, M., Kunz, T.: Proactive bandwidth estimation for IEEE 802.15.4-based networks. In: Proceedings of the 77th IEEE Vehicular Technology Conference (VTC 2013), pp. 1–5 (2013)

    Google Scholar 

  48. Gupta, D., Wu, D., Mohapatra, P., Chuah, C.-N.: Experimental comparison of bandwidth estimation tools for wireless mesh networks. In: IEEE Proceedings of INFOCOM, pp. 2891–2895, October 2009

    Google Scholar 

  49. Zhao, H., Garcia-Palacios, E., Wei, J., Xi, Y.: Accurate available bandwidth estimation in IEEE 802.11-based ad hoc networks. Comput. Commun. 32(6), 1050–1057 (2009)

    Article  Google Scholar 

  50. Nam, S.Y., Kim, S.J., Lee, S., Kim, H.S.: Estimation of the available bandwidth ratio of a remote link or path segments. Comput. Netw. 57(1), 61–77 (2013)

    Article  Google Scholar 

  51. Brakmo, L.S., Peterson, L.L.: TCP Vegas: End-to-end congestion avoidance on a global internet. IEEE J. Sel. Areas Commun. 13(8), 1465–1480 (1995)

    Article  Google Scholar 

  52. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, R.: TCP Westwood: congestion control with faster recovery. J. Wirel. Netw. 8(5), 467–479 (2002)

    Article  Google Scholar 

  53. Sarr, C., Chaudet, C., et al.: Bandwidth estimation for IEEE 802.11-based ad hoc networks. IEEE Trans. Mob. Comput. 7(10), 1228–1241 (2008)

    Article  Google Scholar 

  54. Yan, Z., Dapeng, W., Bin, W., Muqing, W., Chunxiu, X.: A novel call admission control routing mechanism for 802.11e based multi-hop MANET. In: 4th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1–4 (2008)

    Google Scholar 

  55. Peng, Y., Yan, Z.: Available bandwidth estimating method in IEEE802.11e based mobile ad hoc network. In: 9th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2138–2142 (2012)

    Google Scholar 

  56. de Renesse, R., Ghassemian, M., Friderikos, V., Aghvami, A.H.: QoS enabled routing in mobile ad hoc networks. In: Fifth IEEE International Conference on 3G Mobile Communication Technologies, pp. 678–682 (2004)

    Google Scholar 

  57. Yang, Y., Kravets, R.: Contention aware admission control for ad hoc networks. IEEE Trans. Mob. Comput. 4(4), 363–377 (2005)

    Article  Google Scholar 

  58. de Renesse, R., Ghassemian, M., Friderikos, V., Aghvami, A.H.: Adaptive admission control for ad hoc and sensor networks providing quality of service. Technical report, King College, London (2005)

    Google Scholar 

  59. Lei, L., Zhang, T., Zhou, L., Chen, X., Zhang, C., Luo, C.: Estimating the available medium access bandwidth of IEEE 802.11 ad-hoc networks with concurrent transmission. IEEE Trans.veh. Technol. 64(2), 689–701 (2015)

    Article  Google Scholar 

  60. Farooq, M., Kunz, T.: BandEst: measurement-based available bandwidth estimation and flow admission control algorithm for IEEE 802.15.4-based wireless multimedia networks. Int. J. Distrib. Sens. Netw. 2015 (2015)

    Google Scholar 

  61. Adarbah, H.Y., Linfoot, S., Arafeh, B., Duffy, A.: Effect of physical and virtual carrier sensing on the AODV routing protocol in noisy MANETs. In: IEEE International Conference on Consumer Electronics (ICCE), pp. 508–509 (2013)

    Google Scholar 

  62. Vaidya, N.: On physical carrier sensing in wireless ad hoc networks. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 2525–2535 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folayo Aina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aina, F., Yousef, S., Osanaiye, O. (2019). Bandwidth Estimation for Admission Control in MANET: Review and Conceptual MANET Admission Control Framework. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2018. FTC 2018. Advances in Intelligent Systems and Computing, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-02683-7_46

Download citation

Publish with us

Policies and ethics