Skip to main content

Precise Perturbative QCD Predictions for Large Hadron Collider Physics

  • Conference paper
  • First Online:
Toward a Science Campus in Milan (CDIP 2017)

Included in the following conference series:

  • 250 Accesses

Abstract

We briefly summarize some theoretical advances on perturbative QCD calculations relevant for the physics of the Large Hadron Collider (LHC). As an explicit example, we discuss the next-to-next-to-leading order (NNLO) QCD calculation for the production of a Higgs boson decaying to bottom quarks in association with a vector boson. We show illustrative numerical results for cross sections and associated distributions with typical kinematical cuts applied in the LHC experimental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is an observable independent of the number of soft and collinear final state particles.

  2. 2.

    For a recent review about the state of the art on PDF determination see [4].

  3. 3.

    Given the larger value of the QCD coupling compared to the electroweak one, at typical momentum scales of LHC processes, the impact of the electroweak corrections is in general less relevant.

  4. 4.

    Jets are reconstructed with the flavour-\(k_T\) algorithm with \(R=0.5\) [35].

References

  1. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012). https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214 [hep-ex]

  2. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235 [hep-ex]

  3. S. Heinemeyer et al. [LHC Higgs Cross Section Working Group]. https://doi.org/10.5170/CERN-2013-004, arXiv:1307.1347 [hep-ph]

  4. J. Gao, L. Harland-Lang, J. Rojo, arXiv:1709.04922 [hep-ph]

  5. S. Frixione, Z. Kunszt, A. Signer, Nucl. Phys. B 467, 399 (1996). https://doi.org/10.1016/0550-3213(96)00110-1 [hep-ph/9512328]

  6. S. Catani, M.H. Seymour, Phys. Lett. B 378, 287 (1996); S. Catani, M.H. Seymour, Nucl. Phys. B 485, 291 (1997). [Erratum-ibid. B 510, 503 (1998)]. S. Catani, S. Dittmaier, M.H. Seymour, Z. Trócsányi, Nucl. Phys. B 627, 189 (2002)

    Google Scholar 

  7. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, JHEP 0509, 056 (2005). https://doi.org/10.1088/1126-6708/2005/09/056 [hep-ph/0505111]

  8. G. Somogyi, Z. Trocsanyi, V. Del Duca, JHEP 0701, 070 (2007). https://doi.org/10.1088/1126-6708/2007/01/070 [hep-ph/0609042]

  9. G. Somogyi, Z. Trocsanyi, JHEP 0701, 052 (2007). https://doi.org/10.1088/1126-6708/2007/01/052 [hep-ph/0609043]

  10. S. Catani, M. Grazzini, Phys. Rev. Lett. 98, 222002 (2007). https://doi.org/10.1103/PhysRevLett.98.222002 [hep-ph/0703012]

  11. M. Czakon, Phys. Lett. B 693, 259 (2010). https://doi.org/10.1016/j.physletb.2010.08.036, arXiv:1005.0274 [hep-ph]

  12. R. Boughezal, C. Focke, X. Liu, F. Petriello, Phys. Rev. Lett. 115(6), 062002 (2015). https://doi.org/10.1103/PhysRevLett.115.062002, arXiv:1504.02131 [hep-ph]

  13. J. Gaunt, M. Stahlhofen, F.J. Tackmann, J.R. Walsh, JHEP 1509, 058 (2015). https://doi.org/10.1007/JHEP09(2015)058, arXiv:1505.04794 [hep-ph]

  14. F. Caola, K. Melnikov, R.Röntsch, Eur. Phys. J. C 77(4), 248 (2017). https://doi.org/10.1140/epjc/s10052-017-4774-0, arXiv:1702.01352 [hep-ph]

  15. M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam, G. Zanderighi, Phys. Rev. Lett. 115(8), 082002 (2015). https://doi.org/10.1103/PhysRevLett.115.082002, arXiv:1506.02660 [hep-ph]

  16. S. Catani, L. Cieri, D. de Florian, G. Ferrera, M. Grazzini, Phys. Rev. Lett. 108, 072001 (2012). Erratum: [Phys. Rev. Lett. 117(8), 089901 (2016)]. https://doi.org/10.1103/PhysRevLett.108.072001. https://doi.org/10.1103/PhysRevLett.117.089901, arXiv:1110.2375 [hep-ph]

  17. G. Ferrera, M. Grazzini, F. Tramontano, Phys. Rev. Lett. 107, 152003 (2011). https://doi.org/10.1103/PhysRevLett.107.152003, arXiv:1107.1164 [hep-ph]

  18. M. Grazzini, S. Kallweit, D. Rathlev, A. Torre, Phys. Lett. B 731, 204 (2014). https://doi.org/10.1016/j.physletb.2014.02.037, arXiv:1309.7000 [hep-ph]

  19. G. Ferrera, M. Grazzini, F. Tramontano, JHEP 1404, 039 (2014). https://doi.org/10.1007/JHEP04(2014)039, arXiv:1312.1669 [hep-ph]

  20. G. Ferrera, M. Grazzini, F. Tramontano, Phys. Lett. B 740, 51 (2015). https://doi.org/10.1016/j.physletb.2014.11.040, arXiv:1407.4747 [hep-ph]

  21. T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi, Phys. Rev. Lett. 113(21), 212001 (2014). https://doi.org/10.1103/PhysRevLett.113.212001, arXiv:1408.5243 [hep-ph]

  22. F. Cascioli et al., Phys. Lett. B 735, 311 (2014). https://doi.org/10.1016/j.physletb.2014.06.056, arXiv:1405.2219 [hep-ph]

  23. M. Grazzini, S. Kallweit, D. Rathlev, JHEP 1507, 085 (2015). https://doi.org/10.1007/JHEP07(2015)085, arXiv:1504.01330 [hep-ph]

  24. R. Boughezal, C. Focke, W. Giele, X. Liu, F. Petriello, Phys. Lett. B 748, 5 (2015). https://doi.org/10.1016/j.physletb.2015.06.055, arXiv:1505.03893 [hep-ph]

  25. M. Grazzini, S. Kallweit, D. Rathlev, Phys. Lett. B 750, 407 (2015). https://doi.org/10.1016/j.physletb.2015.09.055, arXiv:1507.06257 [hep-ph]

  26. R. Boughezal, J.M. Campbell, R.K. Ellis, C. Focke, W.T. Giele, X. Liu, F. Petriello, Phys. Rev. Lett. 116(15), 152001 (2016). https://doi.org/10.1103/PhysRevLett.116.152001, arXiv:1512.01291 [hep-ph]

  27. R. Boughezal, J.M. Campbell, R.K. Ellis, C. Focke, W. Giele, X. Liu, F. Petriello, C. Williams, Eur. Phys. J. C 77(1), 7 (2017). https://doi.org/10.1140/epjc/s10052-016-4558-y, arXiv:1605.08011 [hep-ph]

  28. G. Ferrera, G. Somogyi, F. Tramontano, arXiv:1705.10304 [hep-ph]

  29. S. Catani, L. Cieri, D. de Florian, G. Ferrera, M. Grazzini, Nucl. Phys. B 881, 414 (2014). https://doi.org/10.1016/j.nuclphysb.2014.02.011, arXiv:1311.1654 [hep-ph]

  30. V. Del Duca, C. Duhr, A. Kardos, G. Somogyi, Z. Szr, Z. Trcsnyi, Z. Tulipnt, Phys. Rev. D 94(7), 074019 (2016). https://doi.org/10.1103/PhysRevD.94.074019, arXiv:1606.03453 [hep-ph]

  31. V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano, Z. Trcsnyi, JHEP 1504, 036 (2015). https://doi.org/10.1007/JHEP04(2015)036, arXiv:1501.07226 [hep-ph]

  32. J. Butterworth et al., J. Phys. G 43, 023001 (2016); S. Dulat et al., Phys. Rev. D 93(3), 033006 (2016); L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Eur. Phys. J. C 75(5), 204 (2015); R.D. Ball et al. [NNPDF Collaboration], JHEP 1504, 040 (2015); S. Carrazza, S. Forte, Z. Kassabov, J.I. Latorre, J. Rojo, Eur. Phys. J. C 75(8), 369 (2015); J. Gao, P. Nadolsky, JHEP 1407, 035 (2014)

    Google Scholar 

  33. S. Dittmaier et al. [LHC Higgs Cross Section Working Group], arXiv:1101.0593 [hep-ph]

  34. D. de Florian et al. [LHC Higgs Cross Section Working Group], arXiv:1610.07922 [hep-ph]

  35. A. Banfi, G.P. Salam, G. Zanderighi, Eur. Phys. J. C 47, 113 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of Fondazione Cariplo under the grant number 2015-0761.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Ferrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrera, G. (2018). Precise Perturbative QCD Predictions for Large Hadron Collider Physics. In: Bortignon, P., Lodato, G., Meroni, E., Paris, M., Perini, L., Vicini, A. (eds) Toward a Science Campus in Milan. CDIP 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-01629-6_23

Download citation

Publish with us

Policies and ethics