Skip to main content

Computational Methods in Spectroscopy

  • Chapter
  • First Online:
Molecular Spectroscopy—Experiment and Theory

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 26))

  • 1731 Accesses

Abstract

Spectroscopy investigates the interaction of electromagnetic radiation with matter. Along with the development of theoretical methods, increasingly effective numerical algorithms and computational methods as well as computer technologies and resulting growing computer power available for scientists, the so-called in silico experiments —computer simulations of materials and their properties in computer—have become an irreplaceable tool supporting experimental research, often allowing a better understanding of phenomena taking place during these interactions, and associated material properties. As a result, it becomes possible in growing number of cases to effectively design new materials with desired properties and to modify existing ones, to improve their properties. This chapter is devoted to a brief introduction to issues related to theoretical foundations of quantum mechanics and density functional theory , both in stationary and time-dependent form. The key assumptions of these theories are presented, together with the description of various approximations and simplifications necessary for their practical application to the calculation of properties examined by spectroscopic methods. The most important practical problems encountered during calculations, resulting from the complexity of real materials and typical ways of dealing with these problems by means of various simplifications, idealizations, and abstractions in designed structural models corresponding to real materials, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambert JB, Mazzola EP (2018) Nuclear magnetic resonance spectroscopy: an introduction to principles, applications, and experimental methods, 2nd edn. Wiley

    Google Scholar 

  2. Chan JCC (ed) (2012) Solid state NMR. Topics in current chemistry, vol 316. Springer-Verlag, Berlin

    Google Scholar 

  3. Buhl M, van Mourik T (2011) NMR spectroscopy: quantumchemical calculations. WIREs Comput Mol Sci 1:634–647

    Article  CAS  Google Scholar 

  4. Shukla AK (ed) (2017) EMR/ESR/EPR spectroscopy for characterization of nanomaterials. Advanced structured materials, vol 62. Springer, India

    Google Scholar 

  5. van Doorslaer S, Murphy DM (2012) EPR spectroscopy: applications in chemistry and biology. Topics in current chemistry, vol 321. Springer, Berlin

    Google Scholar 

  6. Diem M (2015) Modern vibrational spectroscopy and micro-spectroscopy: theory, instrumentation, and biomedical applications. Wiley, Chichester

    Book  Google Scholar 

  7. Perkampus HH (1992) UV-Vis spectroscopy and its applications. Springer, Berlin

    Book  Google Scholar 

  8. Kumar C (ed) (2013) UV-Vis and photoluminescence spectroscopy for nanomaterials characterization. Springer, Berlin

    Google Scholar 

  9. Hollas JM (2004) Modern spectroscopy, 4th edn. Wiley, Chichester, England

    Google Scholar 

  10. Kuzmany H (2009) Solid-state spectroscopy. An introduction, 2nd edn. Springer, Berlin

    Chapter  Google Scholar 

  11. Briggs D, Seah MP (1990) Auger and X-ray photoelectron. Practical surface analysis spectroscopy, vol 1. Wiley, Chichester

    Google Scholar 

  12. Eland JHD (1984) Photoelectron spectroscopy. An introduction to ultraviolet photoelectron spectroscopy in the gas phase. Butterworth-Heinemann, Oxford

    Google Scholar 

  13. Siegbahn K (1973) Electron spectroscopy for chemical analysis. In: Smith SJ, Walters GK (eds) Atomic physics, vol 3. Springer, Boston, MA

    Google Scholar 

  14. Wolstenholme J (2015) Auger electron spectroscopy: practical application to materials analysis and characterization of surfaces, interfaces, and thin films. Momentum Press

    Google Scholar 

  15. Sharma VK, Klingelhofer G, Nishida T (eds) (2013) Mossbauer spectroscopy: applications in chemistry, biology, industry, and nanotechnology. Wiley

    Google Scholar 

  16. Gütlich P, Bill E, Trautwein AX (2011) Mossbauer spectroscopy and transition metal chemistry: fundamentals and applications. Springer, Heidelberg

    Book  Google Scholar 

  17. Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  18. Gatti F (2014) Molecular quantum dynamics: from theory to applications. Springer, Berlin

    Book  Google Scholar 

  19. Nightingale MP, Umrigar CJ (eds) (1998) Quantum Monte Carlo methods in physics and chemistry. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  20. Mitas L, Roy PN, Tanaka S (eds) (2016) Recent progress in quantum Monte Carlo. In: ACS symposium series, American Chemical Society, Washington, DC, USA

    Google Scholar 

  21. Anderson JB (2007) Quantum Monte-Carlo: origins, development, applications. Oxford University Press, USA

    Google Scholar 

  22. Schrödinger E (1926) Quantisierung als eigenwertproblem. Erste mittteilung. Ann D Physik 79:361–376

    Article  Google Scholar 

  23. Schrödinger E (1926) Quantisierung als eigenwertproblem. Zweite mittteilung. Ann D Physik 79:489–527

    Article  Google Scholar 

  24. Schrödinger E (1926) Quantisierung als eigenwertproblem. Dritte mittteilung. Ann D Physik 80:437–490

    Article  Google Scholar 

  25. Schrödinger E (1926) Quantisierung als eigenwertproblem, Vierte mittteilung. Ann D Physik 81:109–139

    Article  Google Scholar 

  26. Schrödinger E (1926) Der stetige übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14:664–666

    Article  Google Scholar 

  27. Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070

    Article  Google Scholar 

  28. Hartree DR (1928) The wave mechanics of an atom with a non-Coulomb central field. Math Proc Cambridge Phil Soc 24:89–110

    Article  CAS  Google Scholar 

  29. Nemoškalenko VV, Antonov NV (1999) Computational methods in solid state physics. CRC Press

    Google Scholar 

  30. Löwdin PO (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97:1474–1489

    Article  Google Scholar 

  31. Löwdin PO (1959) Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas. Adv Chem Phys 2:207

    Google Scholar 

  32. Sherrill CD, Schaefer HF III (1999) The configuration interaction method: advances in highly correlated approaches. In: Löwdin PO (ed) Advances in quantum chemistry, vol 34. Academic Press, San Diego, pp 143–269

    Google Scholar 

  33. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  34. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Letters 153:503–506

    Article  CAS  Google Scholar 

  35. Pople JA, Seeger R, Krishnan R (1977) Variational configuration interaction methods and comparison with perturbation theory. Int J Quantum Chem 12:149–163

    Article  Google Scholar 

  36. Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem 10:1–19

    Article  CAS  Google Scholar 

  37. Raghavachari K, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14:91–100

    Article  Google Scholar 

  38. Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910–1919

    Article  CAS  Google Scholar 

  39. van Voorhis T, Head-Gordon M (2001) Two-body coupled cluster expansions. J Chem Phys 115:5033–5041

    Article  CAS  Google Scholar 

  40. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–35975

    Article  CAS  Google Scholar 

  41. Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48:157–173

    Article  CAS  Google Scholar 

  42. Olsen J (2011) The CASSCF method: a perspective and commentary. Int J Quantum Chem 111:3267–3272

    Article  CAS  Google Scholar 

  43. Buenker RJ, Peyerimhoff SD (1975) Energy extrapolation in CI calculations. Theor Chim Acta 39:217–228

    Article  CAS  Google Scholar 

  44. Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629

    Article  CAS  Google Scholar 

  45. Curtiss LA, Jones C, Trucks GW, Raghavachari K, Pople JA (1990) Gaussian-1 theory of molecular energies for second-row compounds. J Chem Phys 4:2537–2545

    Article  Google Scholar 

  46. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  47. Curtiss LA, Rachavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 18:7764–7776

    Article  Google Scholar 

  48. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108

    Article  PubMed  CAS  Google Scholar 

  49. Feller D, Peterson KA, Dixon DA (2008) A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. J Chem Phys 129:204105

    Article  PubMed  CAS  Google Scholar 

  50. Peterson KA, Feller D, Dixon DA (2012) Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theor Chem Acc 131: 1079–5

    Google Scholar 

  51. Deyonker NJ, Cundari TR, Wilson AK (2006) The correlation consistent composite approach (ccCA): an alternative to the Gaussian-n methods. J Chem Phys 124(11):114104

    Article  PubMed  CAS  Google Scholar 

  52. Petersson G (2002) Complete basis set models for chemical reactivity: from the helium atom to enzyme kinetics. In: Cioslowski J (ed) Quantum-mechanical prediction of thermochemical data, vol 22. Springer, Netherlands, pp 99–130

    Chapter  Google Scholar 

  53. Thomas LH (1927) The calculation of atomic fields. Proc Camb Phil Soc 23:542–548

    Article  CAS  Google Scholar 

  54. Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73–79

    Article  CAS  Google Scholar 

  55. Dirac PAM (1930) Note on exchange phenomena in the thomas atom. Proc Camb Phil Soc 26:376–385

    Article  CAS  Google Scholar 

  56. Weizsäcker CF (1935) Zur theorie der Kernmassen. Z Phys 96:431–458

    Article  Google Scholar 

  57. Teller E (1962) On the stability of molecules in Thomas-Fermi theory. Rev Mod Phys 34:627–631

    Article  CAS  Google Scholar 

  58. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871

    Article  Google Scholar 

  59. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138

    Article  Google Scholar 

  60. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  61. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  62. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  63. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  64. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  65. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  66. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406–136409

    Article  PubMed  CAS  Google Scholar 

  67. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  68. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  69. Wu Z, Cohen RE (2006) More accurate gradient approximation for solids. Phys Rev B 73:235116–235121

    Article  CAS  Google Scholar 

  70. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401–146404

    Article  PubMed  CAS  Google Scholar 

  71. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  72. Swart M, Solà M, Bickelhaupt FM (2009) A new all-round DFT functional based on spin states and SN2 barriers. J Chem Phys 131:094103

    Article  PubMed  CAS  Google Scholar 

  73. Sun J, Perdew JP, Ruzsinszky A (2015) Semilocal density functional obeying a strongly tightened bound for exchange. Proc Nat Acad Sci 112:685–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil Trans R Soc A 372:20120476

    Article  PubMed  CAS  Google Scholar 

  75. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  76. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  77. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985

    Article  CAS  Google Scholar 

  78. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  79. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215

    Article  CAS  Google Scholar 

  80. Gunnarsson O, Jonson M, Lundqvist BI (1976) Exchange and correlation in atoms, molecules and solids. Phys Lett A 59:177–179

    Article  Google Scholar 

  81. Alonso JA, Girifalco LA (1978) Nonlocal approximation to the exchange potential and kinetic energy of an inhomogeneous electron gas. Phys Rev B 17:3735–3743

    Article  CAS  Google Scholar 

  82. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943–954

    Article  CAS  Google Scholar 

  83. Koleżyński A, Król M, Żychowicz M (2018) The structure of geopolymers—theoretical studies. J Mol Struct 1163:465–471

    Article  CAS  Google Scholar 

  84. Groenhof G (2013) Introduction to QM/MM simulations. In: Monticelli L, Salonen E (eds) Biomolecular simulations: methods and protocols, methods in molecular biology, vol 924. Springer Science+Business Media, New York

    Google Scholar 

  85. Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA (2018) Spectroscopy in complex environments from QM–MM simulations. Chem Rev 118:4071–4113

    Article  CAS  PubMed  Google Scholar 

  86. Koleżyński A, Mikuła A, Król M (2016) Periodic model of LTA framework containing various non-tetrahedral cations. Spectrochim Acta A 157:17–25

    Article  CAS  Google Scholar 

  87. Thomas M, Brehm M, Fligg R, Vöhringer P, Kirchner B (2013) Computing vibrational spectra from ab initio molecular dynamics. Phys Chem Chem Phys 15:6608–6622

    Article  CAS  PubMed  Google Scholar 

  88. DickinsonJA Hockridge MR, Kroemer RT, Robertson EG, Simons JP, McCombie J, Walker M (1998) Conformational choice, hydrogen bonding, and rotation of the S1 ← S0 electronic transition moment in 2-Phenylethyl Alcohol, 2-Phenylethylamine, and their water clusters. J Am Chem Soc 120:2622–2632

    Article  Google Scholar 

  89. Kubelka J, Keiderling TA (2001) Differentiation of β-sheet-forming structures: Ab initio-based simulations of IR absorption and vibrational CD for model peptide and protein β-sheets. J Am Chem Soc 123:12048–12058

    Article  CAS  PubMed  Google Scholar 

  90. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations: the theory of infrared and Raman vibrational spectra. McGraw-Hill co., New York, USA

    Google Scholar 

  91. Nafie LA, Polavarapu PL (1981) Localized molecular orbital calculations of vibrational circular dichroism. I. General theoretical formalism and CNDO results for the carbon-deuterium stretching vibration in neopentyl-1-d-chloride. J Chem Phys 75:2935–2944

    Article  CAS  Google Scholar 

  92. Nafie LA, Freedman TB (1981) A unified approach to the determination of infrared and Raman vibrational optical activity intensities using localized molecular orbitals. J Chem Phys 75:4847–4851

    Article  CAS  Google Scholar 

  93. Kormornicki A, McIver JW Jr (1979) An efficient ab initio method for computing infrared and Raman intensities: application to ethylene. J Chem Phys 70:2014–2016

    Article  Google Scholar 

  94. King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47: 1651–1564

    Article  CAS  Google Scholar 

  95. Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899–915

    Article  CAS  Google Scholar 

  96. Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56:12847–12865

    Article  CAS  Google Scholar 

  97. Silvestrelli PL, Parrinello M (1999) Water molecule dipole in the gas and in the liquid phase. Phys Rev Lett 82:3308–3311

    Article  CAS  Google Scholar 

  98. Maschio L, Kirtman B, Orlando R, Rèrat M (2012) Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method. J Chem Phys 137:204113

    Article  PubMed  CAS  Google Scholar 

  99. Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. J Chem Phys 139:164101

    Article  PubMed  CAS  Google Scholar 

  100. Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J Chem Phys 139:164102

    Article  PubMed  CAS  Google Scholar 

  101. Grimme S (2004) Calculation of the electronic spectra of large molecules. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry. Wiley

    Google Scholar 

  102. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037

    Article  CAS  PubMed  Google Scholar 

  103. Olivucci M, Sinicropi A (2005) Computational photochemistry. In: Olivucci M (ed) Computational photochemistry, vol 16. Elsevier, Amsterdam

    Google Scholar 

  104. Gagliardia L, Roos BO (2007) Multiconfigurational quantum chemical methods for molecular systems containing actinides. Chem Soc Rev 36:893–903

    Article  CAS  Google Scholar 

  105. Burke K, Werschnik J, Gross EK (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123:62206

    Article  PubMed  CAS  Google Scholar 

  106. Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856

    Article  CAS  PubMed  Google Scholar 

  107. Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323

    Article  CAS  PubMed  Google Scholar 

  108. Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113:2019–2039

    Article  CAS  Google Scholar 

  109. Marques MAL, Nogueira FMS, Gross EKU, Rubio A (eds) (2012) Fundamentals of time-dependent density functional theory, vol 837. Springer-Verlag, Heidelberg

    Google Scholar 

  110. Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin–bacteriochlorin and bacteriochlorophyll–spheroidene complexes. J Am Chem Soc 126:4007–4016

    Article  CAS  PubMed  Google Scholar 

  111. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  112. Langhoff PW, Epstein ST, Karplus M (1972) Aspects of time-dependent perturbation theory. Rev Mod Phys 44:602–644

    Article  CAS  Google Scholar 

  113. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  114. Gross EKU, Dobson JF, Petersilka M (1996) Density functional theory of time-dependent phenomena. Topics in chemistry. In: Nalewajski RF (ed) Density functional theory. Topics in current chemistry, vol 181. Springer-Verlag, Berlin

    Google Scholar 

  115. Improta R (2012) UV-visible absorption and emission energies in condensed phase by PCM/TD-DFT methods. In: Barone V (ed) Computational strategies for spectroscopy: from small molecules to nano systems. Wiley, Hoboken, New Jersey

    Google Scholar 

  116. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224

    Article  CAS  Google Scholar 

  117. Mennucci B, Cammi R (eds) (2008) Continuum solvation models in chemical physics: from theory to applications. Wiley, Chichester, England

    Google Scholar 

  118. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  119. Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113

    Article  CAS  Google Scholar 

  120. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans 2:799–805

    Article  Google Scholar 

  121. Klamt A (2005) From quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, Boston, USA

    Google Scholar 

  122. Skyner RE, McDonagh JL, Groom CR, van Mourik T, Mitchell JBO (2015) A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys Chem Chem Phys 17:6174–6191

    Article  CAS  PubMed  Google Scholar 

  123. Kamerlin SCL, Haranczyk M, Warshel A (2009) Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models. Chem Phys Chem 10:1125–1134

    Article  CAS  PubMed  Google Scholar 

  124. Fletcher RE, Ling S, Slater B (2017) Violations of Lowenstein{‘}s rule in zeolites. Chem Sci 8:7483–7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ikeda T, Izumi F, Kodaira T, Kamiyama T (1998) Structural study of sodium-type zeolite LTA by combination of Rietveld and maximum-entropy methods. J Chem Mat 10:3996–4004

    Article  CAS  Google Scholar 

  126. Pluth JJ, Smith JV (1980) Accurate redetermination of crystal structure of dehydrated zeolite A. Absence of near zero coordination of sodium. Refinement of silicon, aluminum-ordered superstructure. Am Chem Soc 102:4704–4708

    Article  CAS  Google Scholar 

  127. Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61:7877–7882

    Article  CAS  Google Scholar 

  128. Íñiguez J, Vanderbilt D, Bellaiche L (2003) First-principles study of (BiScO3)1-x–(PbTiO3)x piezoelectric alloys. Phys Rev B 67:224107

    Article  CAS  Google Scholar 

  129. Winkler B, Pickard C, Milman V (2002) Applicability of a quantum mechanical “virtual crystal approximation” to study Al/Si-disorder. Chem Phys Lett 362:266–270

    Article  CAS  Google Scholar 

  130. Soven P (1966) Coherent-potential model of substitutional disordered alloys. Phys Rev 156:809–813

    Article  Google Scholar 

  131. Velický B, Kirkpatrick S, Ehrenreich H (1968) Single-site approximations in the electronic theory of simple binary alloys. Phys Rev 175:747–766

    Article  Google Scholar 

  132. Velický B (1969) Theory of electronic transport in disordered binary alloys: coherent-potential approximation. Phys Rev 184:614–627

    Article  Google Scholar 

  133. Drożdż E, Koleżyński A (2017) The structure, electrical properties and chemical stability of porous Nb-doped SrTiO3—experimental and theoretical studies. RSC Adv 7:28898–28908

    Article  Google Scholar 

  134. Mikuła A, Drożdż E, Koleżyński A (2018) Electronic structure and structural properties of Cr-doped SrTiO3. Theoretical investigation. J Alloys Compd 749:931–938

    Article  CAS  Google Scholar 

  135. Kupwade-Patil K, Soto F, Kunjumon A, Allouche E, Mainardi D (2013) Multi-scale modeling and experimental investigations of geopolymeric gels at elevated temperatures. Comp Struct 122:164–177

    Article  Google Scholar 

  136. Kroll P (2003) Modelling and simulation of amorphous silicon oxycarbide. J Mater Chem 13:1657–1668

    Article  CAS  Google Scholar 

  137. Tian KV, Mahmoud MZ, Cozza P, Licoccia S, Fang D, Di Tommaso D, Chass GA, Greaves N (2016) Periodic vs. molecular cluster approaches to resolving glass structure and properties: anorthite a case study. J Non-Cryst Solids 451:138–145

    Article  CAS  Google Scholar 

  138. White CE, Provis JL, Proffen T, Riley DP, van Deventer JS (2010) Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys 12:3239–3245

    Article  CAS  PubMed  Google Scholar 

  139. Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, D L, Morokuma K (2015) The ONIOM method and its applications. Chem Rev 115:5678–5796

    Article  CAS  PubMed  Google Scholar 

  140. Asthagiri A, Janik MJ (eds) (2013) Computational catalysis: RSC (Catalysis series). Roy Soc Chem, UK

    Google Scholar 

  141. van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley-VCH Verlag GmbH & Co., Weinheim, Germany

    Book  Google Scholar 

  142. van Santen RA, Sautet P (eds) (2009) Computational methods in catalysis and materials science: an introduction for scientists and engineers. Wiley-VCH Verlag GmbH & Co., Weinheim, Germany

    Google Scholar 

  143. Thiel W (2014) Computational catalysis—past, present, and future. Angew Chem Int Ed 53:8605–8613

    Article  CAS  Google Scholar 

  144. https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Koleżyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koleżyński, A. (2019). Computational Methods in Spectroscopy. In: Koleżyński, A., Król, M. (eds) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-01355-4_1

Download citation

Publish with us

Policies and ethics