Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2228))

  • 1017 Accesses

Abstract

Zeta integrals are indispensable tools for studying automorphic representations and their L-functions. In broad terms, it involves integrating automorphic forms (global case) or “coefficients” of representations (local case) against suitable test functions such as Eisenstein series or Schwartz–Bruhat functions; furthermore, these integrals are often required to have meromorphic continuation in some complex parameter λ and satisfy certain symmetries, i.e. functional equations. These ingenious constructions are usually crafted on a case-by-case basis; systematic theories are rarely pursued with a notable exception (Sakellaridis, Algebra Number Theory 6:611–667, 2012), which treats only the global zeta integrals. The goal of this work is to explore some aspects of this general approach, with an emphasis on the local formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizenbud, A., Gourevitch, D.: Schwartz functions on Nash manifolds. Int. Math. Res. Not. IMRN 2008(5), 37 (2008). Art. ID rnm 155. http://dx.doi.org/10.1093/imrn/rnm155

    Google Scholar 

  2. Bernstein, J.N.: On the support of Plancherel measure. J. Geom. Phys. 5(4), 663–710 (1989). http://dx.doi.org/10.1016/0393-0440(88)90024-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, J., Krötz, B.: Smooth Fréchet globalizations of Harish-Chandra modules. Israel J. Math. 199(1), 45–111 (2014). http://dx.doi.org/10.1007/s11856-013-0056-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Bopp, N., Rubenthaler, H.: Local zeta functions attached to the minimal spherical series for a class of symmetric spaces. Mem. Am. Math. Soc. 174(821), viii+233 (2005). http://dx.doi.org/10.1090/memo/0821

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N.: Espaces vectoriels topologiques. Éléments de mathématique [Elements of Mathematics], Chapitres 1 à 5, new edn. Masson, Paris (1981)

    Google Scholar 

  6. Bouthier, A., Ngô, B.C., Sakellaridis, Y.: On the formal arc space of a reductive monoid. Am. J. Math. 138(1), 81–108 (2016). http://dx.doi.org/10.1353/ajm.2016.0004

    Article  MathSciNet  MATH  Google Scholar 

  7. Braverman, A., Kazhdan, D.: On the Schwartz space of the basic affine space. Sel. Math. (N.S.) 5(1), 1–28 (1999). http://dx.doi.org/10.1007/s000290050041

    Article  MathSciNet  MATH  Google Scholar 

  8. Braverman, A., Kazhdan, D.: γ-Functions of representations and lifting. Geom. Funct. Anal. (Special Volume, Part I), 237–278 (2000). http://dx.doi.org/10.1007/978-3-0346-0422-2_9. With an appendix by V. Vologodsky, GAFA 2000 (Tel Aviv, 1999)

  9. Braverman, A., Kazhdan, D.: Normalized intertwining operators and nilpotent elements in the Langlands dual group. Mosc. Math. J. 2(3), 533–553 (2002). Dedicated to Yuri I. Manin on the occasion of his 65th birthday

    Article  MathSciNet  MATH  Google Scholar 

  10. Gelbart, S., Piatetski-Shapiro, I., Rallis, S.: Explicit Constructions of Automorphic L-Functions. Lecture Notes in Mathematics, vol. 1254. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  11. Gel’fand, I.M., Shilov, G.E.: Generalized Functions, vol. 1. Academic/Harcourt Brace Jovanovich Publishers, New York/London (1964/1977). Properties and operations, Translated from the Russian by Eugene Saletan

    Google Scholar 

  12. Gel’fand, I.M., Vilenkin, N.Y.: Generalized Functions, vol. 4. Academic/Harcourt Brace Jovanovich, Publishers, New York/London (1964/1977). Applications of harmonic analysis, Translated from the Russian by Amiel Feinstein

    Google Scholar 

  13. Getz, J.R., Liu, B.: A refined Poisson summation formula for certain Braverman-Kazhdan spaces. ArXiv e-prints (2017)

    Google Scholar 

  14. Godement, R., Jacquet, H.: Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, vol. 260. Springer, Berlin (1972)

    Google Scholar 

  15. Igusa, J.I.: An Introduction to the Theory of Local Zeta Functions. AMS/IP Studies in Advanced Mathematics, vol. 14. American Mathematical Society, Providence (2000)

    Google Scholar 

  16. Kimura, T.: Introduction to Prehomogeneous Vector Spaces. Translations of Mathematical Monographs, vol. 215. American Mathematical Society, Providence (2003). Translated from the 1998 Japanese original by Makoto Nagura and Tsuyoshi Niitani and revised by the author

    Google Scholar 

  17. Knop, F., Van Steirteghem, B.: Classification of smooth affine spherical varieties. Transform. Groups 11(3), 495–516 (2006). http://dx.doi.org/10.1007/s00031-005-1116-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Kobayashi, T., Oshima, T.: Finite multiplicity theorems for induction and restriction. Adv. Math. 248, 921–944 (2013). http://dx.doi.org/10.1016/j.aim.2013.07.015

    Article  MathSciNet  MATH  Google Scholar 

  19. Lafforgue, L.: Noyaux du transfert automorphe de Langlands et formules de Poisson non linéaires. Jpn. J. Math. 9(1), 1–68 (2014). http://dx.doi.org/10.1007/s11537-014-1274-y

    Article  MathSciNet  MATH  Google Scholar 

  20. Lapid, E., Mao, Z.: Model transition for representations of metaplectic type. Int. Math. Res. Not. IMRN 2015(19), 9486–9568 (2015). http://dx.doi.org/10.1093/imrn/rnu225. With an appendix by Marko Tadić

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, W.W.: Towards generalized prehomogeneous zeta integrals. In: Heiermann, V., Prasad D. (eds.) Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms. Lecture Notes in Mathematics, vol. 2221. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-95231-4. ArXiv:1610.05973

    MATH  Google Scholar 

  22. Maurin, K.: General Eigenfunction Expansions and Unitary Representations of Topological Groups. Monografie Matematyczne, Tom, vol. 48. PWN-Polish Scientific Publishers, Warsaw (1968)

    Google Scholar 

  23. Ngô, B.C.: On a certain sum of automorphic L-functions. In: Automorphic Forms and Related Geometry: Assessing the Legacy of I. I. Piatetski-Shapiro. Contemporary Mathematics, vol. 614, pp. 337–343. American Mathematical Society, Providence (2014). http://dx.doi.org/10.1090/conm/614/12270

    Google Scholar 

  24. Piatetski-Shapiro, I., Rallis, S.: 𝜖 factor of representations of classical groups. Proc. Natl. Acad. Sci. U.S.A. 83(13), 4589–4593 (1986). http://dx.doi.org/10.1073/pnas.83.13.4589

    Article  MathSciNet  MATH  Google Scholar 

  25. Sakellaridis, Y.: Spherical varieties and integral representations of L-functions. Algebra Number Theory 6(4), 611–667 (2012). http://dx.doi.org/10.2140/ant.2012.6.611

    Article  MathSciNet  MATH  Google Scholar 

  26. Sakellaridis, Y.: Inverse Satake transforms. In: Werner, M., Shin, S.W., Templier, N. (eds.) Geometric Aspects of the Trace Formula, Simons Symposia. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-94833-1. ArXiv:1410.2312

    Google Scholar 

  27. Sakellaridis, Y., Venkatesh, A.: Periods and Harmonic Analysis on Spherical Varieties. Astérisque, vol. 396, pp. viii+360. Mathematical Society of France, Paris (2017)

    Google Scholar 

  28. Sato, F.: On functional equations of zeta distributions. In: Automorphic Forms and Geometry of Arithmetic Varieties. Advanced Studies in Pure Mathematics, vol. 15, pp. 465–508. Academic, Boston (1989)

    Google Scholar 

  29. Shafarevich, I.R. (ed.): Algebraic Geometry IV. Encyclopaedia of Mathematical Sciences, vol. 55. Springer, Berlin (1994). http://dx.doi.org/10.1007/978-3-662-03073-8. Linear algebraic groups. Invariant theory, A translation of ıt Algebraic geometry. 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [ MR1100483 (91k:14001)]. Translation edited by A.N. Parshin and I.R. Shafarevich

  30. Timashev, D.A.: Homogeneous Spaces and Equivariant Embeddings. Encyclopaedia of Mathematical Sciences. Invariant Theory and Algebraic Transformation Groups, 8, vol. 138. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-18399-7

    Chapter  MATH  Google Scholar 

  31. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic, New York (1967)

    Google Scholar 

  32. Weil, A.: Fonction zêta et distributions. In: Séminaire Bourbaki, vol. 9, pp. 523–531, Exp. No. 312. Mathematical Society of France, Paris (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, WW. (2018). Introduction. In: Zeta Integrals, Schwartz Spaces and Local Functional Equations. Lecture Notes in Mathematics, vol 2228. Springer, Cham. https://doi.org/10.1007/978-3-030-01288-5_1

Download citation

Publish with us

Policies and ethics