Skip to main content

Adipose Tissue Lipolysis

  • Chapter
  • First Online:
  • 2518 Accesses

Abstract

Adipose tissue lipolysis is the process by which stored triacylglycerols in the lipid droplet of adipocytes are released as non-esterified fatty acids to be oxidized in peripheral organs when energy is needed. The hydrolysis of triacylglycerols involves different regulators, such as lipases, co-lipases, and proteins that coat the lipid droplet and, several converging signal transduction pathways. Dysfunction in fat mobilization may play a noticeable role in the development of obesity-related metabolic disorders, such as insulin resistance, dyslipidemia, and cardiovascular risk. This chapter aims at reviewing the fast-growing knowledge about the proteins and mechanisms modulating lipolysis with a focus on the ongoing pharmacological strategies targeting antilipolytic pathways. Inhibition of adipose tissue lipolysis may be viewed as a mechanism limiting lipotoxicity in non-adipose organs, thus alleviating the development of insulin resistance and obesity-induced metabolic abnormalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmadian M, Duncan RE, Varady KA et al (2009) Adipose Overexpression of Desnutrin Promotes Fatty Acid Use and Attenuates Diet-Induced Obesity. Diabetes 58:855–866

    Article  PubMed  CAS  Google Scholar 

  • Ahmadian M, Abbott MJ, Tang T et al (2011) Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab 13:739–748

    Article  PubMed  CAS  Google Scholar 

  • Ahmed K, Tunaru S, Offermanns S (2009) GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol Sci 30:557–562

    Article  PubMed  CAS  Google Scholar 

  • Ahmed K, Tunaru S, Tang C et al (2010) An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab 11:311–319

    Article  PubMed  CAS  Google Scholar 

  • Arner P, Bernard S, Salehpour M et al (2011) Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478:110–113

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ, Song CK (2007) Thematic review series: adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. J Lipid Res 48:1655–1672

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ, Shrestha YB, Vaughan CH et al (2010) Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 318:34–43

    Article  PubMed  CAS  Google Scholar 

  • Bezaire V, Langin D (2009) Regulation of adipose tissue lipolysis revisited. Proc Nutr Soc 68:350–360

    Article  PubMed  CAS  Google Scholar 

  • Bezaire V, Mairal A, Ribet C et al (2009) Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes. J Biol Chem 284:18282–18291

    Article  PubMed  CAS  Google Scholar 

  • Bing C (2011) Lipid mobilization in cachexia: mechanisms and mediators. Curr Opin Support Palliat Care 5:356–360

    PubMed  Google Scholar 

  • Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL, Subramanian V, Garcia A et al (2009) Perilipin A and the control of triacylglycerol metabolism. Mol Cell Biochem 326:15–21

    Article  PubMed  CAS  Google Scholar 

  • Choi YH, Park S, Hockman S et al (2006) Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J Clin Invest 116:3240–3251

    Article  PubMed  CAS  Google Scholar 

  • Coe NR, Simpson MA, Bernlohr DA (1999) Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res 40:967–972

    PubMed  CAS  Google Scholar 

  • Cohen AW, Razani B, Schubert W et al (2004) Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149:942–949

    Article  PubMed  CAS  Google Scholar 

  • Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489–503

    Article  PubMed  CAS  Google Scholar 

  • Furuhashi M, Fucho R, Gorgun CZ et al (2008) Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest 118:2640–2650

    PubMed  CAS  Google Scholar 

  • Ge H, Li X, Weiszmann J et al (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519–4526

    Article  PubMed  CAS  Google Scholar 

  • Girousse A, Langin D (2011) Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models. Int J Obes (Lond) Jun 14. doi: 10.1038/ijo.2011.113. [Epub ahead of print]

  • Granneman JG, Moore HP, Granneman RL et al (2007) Analysis of lipolytic protein trafficking and interactions in adipocytes. J Biol Chem 282:5726–5735

    Article  PubMed  CAS  Google Scholar 

  • Granneman J, Moore H, Krishnamoorthy R, Rathod M (2009) Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem 284:34538–34544

    Article  PubMed  CAS  Google Scholar 

  • Granneman JG, Moore HP, Mottillo EP et al (2011) Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J Biol Chem 286:5126–5135

    Article  PubMed  CAS  Google Scholar 

  • Haemmerle G, Lass A, Zimmermann R et al (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa A, Hara T, Katsuma S et al (2008) Free fatty acid receptors and drug discovery. Biol Pharm Bull 31:1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Huijsman E, van de Par C, Economou C et al (2009) Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice. Am J Physiol Endocrinol Metab 297:E505–E513

    Article  PubMed  CAS  Google Scholar 

  • Jaworski K, Ahmadian M, Duncan RE et al (2009) AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med 15:159–168

    Article  PubMed  CAS  Google Scholar 

  • Karpe F, Dickmann JR, Frayn KN (2011) Fatty acids, obesity, and insulin resistance: time for a revaluation. Diabetes 60:2441–2449

    Article  PubMed  CAS  Google Scholar 

  • Kolditz CI, Langin D (2010) Adipose tissue lipolysis. Curr Opin Clin Nutr Metab Care 13:377–381

    Article  PubMed  CAS  Google Scholar 

  • Kos K, Baker AR, Jernas M et al (2009) DPP-IV inhibition enhances the antilipolytic action of NPY in human adipose tissue. Diabetes Obes Metab 11:285–292

    Article  PubMed  CAS  Google Scholar 

  • Krintel C, Osmark P, Larsen MR et al (2008) Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates. PLoS One 3:e3756

    Article  PubMed  Google Scholar 

  • Krintel C, Morgelin M, Logan DT, Holm C (2009) Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J 276:4752–4762

    Article  PubMed  CAS  Google Scholar 

  • Lafontan M, Berlan M (1993) Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34:1057–1091

    PubMed  CAS  Google Scholar 

  • Lafontan M, Berlan M (1995) Fat cell α2-adrenoceptors: the regulation of fat cell function and lipolysis. Endocrine Rev 16:716–738

    CAS  Google Scholar 

  • Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48:275–297

    Article  PubMed  CAS  Google Scholar 

  • Lafontan M, Moro C, Sengenes C et al (2005) An unsuspected metabolic role for atrial natriuretic peptides: the control of lipolysis, lipid mobilization, and systemic nonesterified fatty acids levels in humans. Arterioscler Thromb Vasc Biol 25:2032–2042

    Article  PubMed  CAS  Google Scholar 

  • Lafontan M, Moro C, Berlan M et al (2008) Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol Metab 19:130–137

    Article  PubMed  CAS  Google Scholar 

  • Lan H, Cheng CC, Kowalski TJ et al (2011) Small-molecule inhibitors of FABP4/5 ameliorate dyslipidemia but not insulin resistance in mice with diet-induced obesity. J Lipid Res 52:646–656

    Article  PubMed  CAS  Google Scholar 

  • Langin D (2006) Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 53:482–491

    Article  PubMed  CAS  Google Scholar 

  • Langin D (2010a) Adipose tissue lipolysis revisited (again!): lactate involvement in insulin antilipolytic action. Cell Metab 11:242–243

    Article  PubMed  CAS  Google Scholar 

  • Langin D (2010b) Recruitment of brown fat and conversion of white into brown adipocytes: Strategies to fight the metabolic complications of obesity? Biochim Biophys Acta 1801:372–376

    Article  PubMed  CAS  Google Scholar 

  • Langin D (2011) In and out: adipose tissue lipid turnover in obesity and dyslipidemia. Cell Metab 14:569–570

    Article  PubMed  CAS  Google Scholar 

  • Langin D, Arner P (2006) Importance of TNF alpha and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol Metab 17:314–320

    Article  PubMed  CAS  Google Scholar 

  • Lass A, Zimmermann R, Haemmerle G et al (2006) Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 3:309–319

    Article  PubMed  CAS  Google Scholar 

  • Lönnqvist F, Krief S, Strosberg AD et al (1993) Evidence for a functional β3-adrenoceptor in man. Br J Pharmacol 110:929–936

    Article  PubMed  Google Scholar 

  • Lukasova M, Hanson J, Tunaru S, Offermanns S (2011) Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol Sci 32:700–707

    Article  PubMed  CAS  Google Scholar 

  • Magnusson B, Gummesson A, Glad CA et al (2008) Cell death-inducing DFF45-like effector C is reduced by caloric restriction and regulates adipocyte lipid metabolism. Metabolism 57:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Mazzucotelli A, Viguerie N, Tiraby C et al (2007) The transcriptional coactivator PGC-1alpha and the nuclear receptor PPARalpha control the expression of glycerol kinase and metabolism genes independently of PPARgamma activation in human white adipocytes. Diabetes 56:2467–2475

    Article  PubMed  CAS  Google Scholar 

  • McQuaid SE, Hodson L, Neville MJ et al (2011) Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes 60:47–55

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Perfield JW, Souza SC et al (2007) Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem 282:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Moller N, Jorgensen JO (2009) Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 30:152–177

    Article  PubMed  Google Scholar 

  • Nishino N, Tamori Y, Tateya S et al (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118:2808–2821

    PubMed  CAS  Google Scholar 

  • Nordstrom EA, Ryden M, Backlund EC et al (2005) A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) in adipocyte lipolysis and obesity. Diabetes 54:1726–1734

    Article  PubMed  Google Scholar 

  • Pilch PF, Souto RP, Liu L et al (2007) Cellular spelunking: exploring adipocyte caveolae. J Lipid Res 48:2103–2111

    Article  PubMed  CAS  Google Scholar 

  • Plomgaard P, Fischer CP, Ibfelt T et al (2008) Tumour necrosis factor-alpha modulates human in vivo lipolysis. J Clin Endocrinol Metab 93:543–549

    Article  PubMed  CAS  Google Scholar 

  • Puri V, Ranjit S, Konda S et al (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A 105:7833–7838

    Article  PubMed  CAS  Google Scholar 

  • Radner FP, Streith IE, Schoiswohl G et al (2010) Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J Biol Chem 285:7300–7311

    Article  PubMed  CAS  Google Scholar 

  • Ribet C, Montastier E, Valle C et al (2010) PPARalpha control of lipid and glucose metabolism in human white adipocytes. Endocrinology 151:123–133

    Article  PubMed  CAS  Google Scholar 

  • Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277

    Article  PubMed  CAS  Google Scholar 

  • Scheja L, Makowski L, Uysal KT et al (1999) Altered insulin secretion associated with reduced lipolytic efficiency in aP2-/- mice. Diabetes 48:1987–1994

    Article  PubMed  CAS  Google Scholar 

  • Scherer T, O’Hare J, Diggs-Andrews K et al (2011) Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab 13:183–194

    Article  PubMed  CAS  Google Scholar 

  • Schoiswohl G, Schweiger M, Schreiber R et al (2010) Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids. J Lipid Res 51:490–499

    Article  PubMed  CAS  Google Scholar 

  • Schweiger M, Schoiswohl G, Lass A et al (2008) The C-terminal region of human adipose triglyceride lipase affects enzyme activity and lipid droplet binding. J Biol Chem 283:17211–17220

    Article  PubMed  CAS  Google Scholar 

  • Shen WJ, Yu Z, Patel S et al (2011) Hormone-sensitive lipase modulates adipose metabolism through PPARgamma. Biochim Biophys Acta 1811:9–16

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Thompson BR, Sanders MA, Bernlohr DA (2007) Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase: regulation by fatty acids and phosphorylation. J Biol Chem 282:32424–32432

    Article  PubMed  CAS  Google Scholar 

  • Strom K, Hansson O, Lucas S et al (2008) Attainment of brown adipocyte features in white adipocytes of hormone-sensitive lipase null mice. PLoS One 3:e1793

    Article  PubMed  Google Scholar 

  • Strom K, Gundersen TE, Hansson O et al (2009) Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL. FASEB J 23:2307–2316

    Article  PubMed  Google Scholar 

  • Taschler U, Radner FPW, Heier C et al (2011) Monoglyceride lipase-deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem 286:17467–17477

    Article  PubMed  CAS  Google Scholar 

  • Tavernier G, Jimenez M, Giacobino JP et al (2005) Norepinephrine induces lipolysis in beta1/beta2/beta3-adrenoceptor knockout mice. Mol Pharmacol 68:793–799

    PubMed  CAS  Google Scholar 

  • Toh SY, Gong J, Du G et al (2008) Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One 3:e2890

    Article  PubMed  Google Scholar 

  • Turtzo LC, Marx R, Lane MD (2001) Cross-talk between sympathetic neurons and adipocytes in coculture. Proc Natl Acad Sci U S A 98:12385–12390

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux C, Caron-Debarle M, Le Dour C et al (2011) Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol 43:862–876

    Article  PubMed  CAS  Google Scholar 

  • Virtue S, Vidal-Puig A (2008) It’s not how fat you are, it’s what you do with it that counts. PLoS Biol 6:e237

    Article  PubMed  Google Scholar 

  • Wang M, Fotsch C (2006) Small-molecule compounds that modulate lipolysis in adipose tissue: targeting strategies and molecular classes. Chem Biol 13:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Omatsu N, Morimoto E et al (2007) CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation. J Lipid Res 48:1078–1089

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Lu X, Lombes M et al (2010) The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab 11:194–205

    Article  PubMed  CAS  Google Scholar 

  • Zechner R, Kienesberger PC, Haemmerle G et al (2009) Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 50:3–21

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Yon Toh S, Chen Z et al (2003) Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 35:49–56

    Article  PubMed  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Lass A, Haemmerle G, Zechner R (2009) Fate of fat: The role of adipose triglyceride lipase in lipolysis. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 1791:494–500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Lipolysis studies from our laboratories are supported by Inserm, Université Paul Sabatier, Hôpitaux de Toulouse, FRM, SFD, DHOS, GlaxoSmithKlineBeecham, Région Midi-Pyrénées and the Commission of the European Communities Collaborative Project ADAPT (www.adapt-eu.net), Contract No. HEALTH-F2-2008-2011 00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Langin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Langin, D., Mouisel, E. (2013). Adipose Tissue Lipolysis. In: Bastard, JP., Fève, B. (eds) Physiology and Physiopathology of Adipose Tissue. Springer, Paris. https://doi.org/10.1007/978-2-8178-0343-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0343-2_10

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0342-5

  • Online ISBN: 978-2-8178-0343-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics