Skip to main content
  • 877 Accesses

Résumé

Bien avant d’étudier l’ADN, on estimait que l’obésité était une maladie familiale. Les études de corrélations familiales montrent un haut degré de ressemblance pour l’IMC et une héritabilité élevée de l’obésité. Cependant, comme l’a fait remarquer Claude Bouchard (un des meilleurs spécialistes de la génétique de l’équilibre énergétique), dans les familles d’obèses, même les chats et les chiens sont obèses ! En réalité, l’environnement commun dans les familles constitue un problème important quand on étudie la génétique de l’obésité. La plupart du temps, l’obésité est le résultat d’interactions complexes entre génétique et environnement, comme la majorité des maladies importantes en termes de santé publique, les maladies multifactorielles et polygéniques. Néanmoins, quelques rares cas d’obésité sont provoqués par des défauts d’un seul gène. La proportion de sujets obèses porteurs de tels défauts est infime, mais leur étude a fourni une grande partie des connaissances sur la physiologie de la régulation de l’équilibre énergétique et du comportement alimentaire. Les gènes dont les défauts majeurs entraînent les obésités monogéniques peuvent être impliqués aussi dans la susceptibilité aux obésités multifactorielles communes par des variants génétiques fréquents (polymorphismes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Allison DB, Faith MS, Nathan JS (1996) Risch’s lambda values for human obesity. Int J Obes Relat Metab Disord 20: 990–9

    PubMed  CAS  Google Scholar 

  2. Stunkard AJ, Sorensen TI, Hanis C et al. (1986) An adoption study of human obesity. N Engl J Med 314: 193–8

    Article  PubMed  CAS  Google Scholar 

  3. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE (1990) The body-mass index of twins who have been reared apart. N Engl J Med 322: 1483–7

    Article  PubMed  CAS  Google Scholar 

  4. Bouchard C, Perusse L, Leblanc C et al. (1988) Inheritance of the amount and distribution of human body fat. Int J Obes 12: 205–15

    PubMed  CAS  Google Scholar 

  5. Bouchard C, Tremblay A, Despres JP et al. (1990) The response to long-term overfeeding in identical twins. N Engl J Med 322: 1477–82

    Article  PubMed  CAS  Google Scholar 

  6. Bouchard C (2010) Defining the genetic architecture of the predisposition to obesity: a challenging but not insurmountable task. Am J Clin Nutr 91: 5–6

    Article  PubMed  CAS  Google Scholar 

  7. O’Rahilly S (2009) Human genetics illuminates the paths to metabolic disease. Nature 462: 307–14

    Article  CAS  Google Scholar 

  8. Ramachandrappa S, Farooqi IS (2011) Genetic approaches to understanding human obesity. J Clin Invest 121: 2080–6

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Proenca R, Maffei M et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–32

    Article  PubMed  CAS  Google Scholar 

  10. Montague CT, Farooqi IS, Whitehead JP et al. (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903–8

    Article  PubMed  CAS  Google Scholar 

  11. Farooqi IS, Jebb SA, Langmack G et al. (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341: 879–84

    Article  PubMed  CAS  Google Scholar 

  12. Farooqi IS, Keogh JM, Kamath S et al. (2001) Partial leptin deficiency and human adiposity. Nature 414: 34–5

    Article  PubMed  CAS  Google Scholar 

  13. Blakemore AI, Froguel P (2010) Investigation of Mendelian forms of obesity holds out the prospect of personalized medicine. Ann N Y Acad Sci 1214: 180–9

    Article  PubMed  CAS  Google Scholar 

  14. Farooqi IS (2011) Genetic, molecular and physiological insights into human obesity. Eur J Clin Invest 41: 451–5

    Article  PubMed  Google Scholar 

  15. Ozata M, Ozdemir IC, Licinio J (1999) Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 84: 3686–95

    Article  PubMed  CAS  Google Scholar 

  16. Clément K, Vaisse C, Lahlou N et al. (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392: 398–401

    Article  PubMed  Google Scholar 

  17. Krude H, Biebermann H, Luck W et al. (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19: 155–7

    Article  PubMed  CAS  Google Scholar 

  18. Jackson RS, Creemers JW, Ohagi S et al. (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16: 303–6

    Article  PubMed  CAS  Google Scholar 

  19. Vaisse C, Clément K, Guy-Grand B, Froguel P (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20: 113–4

    Article  PubMed  CAS  Google Scholar 

  20. Yeo GS, Farooqi IS, Aminian S et al. (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20: 111–2

    Article  PubMed  CAS  Google Scholar 

  21. Hinney A, Schmidt A, Nottebom K et al. (1999) Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab 84: 1483–6

    Article  PubMed  CAS  Google Scholar 

  22. Sina M, Hinney A, Ziegler A et al. (1999) Phenotypes in three pedigrees with autosomal dominant obesity caused by haploinsufficiency mutations in the melanocortin-4 receptor gene. Am J Hum Genet 65: 1501–7

    Article  PubMed  CAS  Google Scholar 

  23. Gu W, Tu Z, Kleyn PW et al. (1999) Identification and functional analysis of novel human melanocortin-4 receptor variants. Diabetes 48: 635–9

    Article  PubMed  CAS  Google Scholar 

  24. Vaisse C, Clément K, Durand E et al. (2000) Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 106: 253–62

    Article  PubMed  CAS  Google Scholar 

  25. Farooqi IS, Yeo GS, Keogh JM et al. (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106: 271–9

    Article  PubMed  CAS  Google Scholar 

  26. Mergen M, Mergen H, Ozata M et al. (2001) A novel melanocortin 4 receptor (MC4R) gene mutation associated with morbid obesity. J Clin Endocrinol Metab 86: 3448

    Article  PubMed  CAS  Google Scholar 

  27. Dubern B, Clément K, Pelloux V et al. (2001) Mutational analysis of melanocortin-4 receptor, agouti-related protein, and alpha-melanocyte-stimulating hormone genes in severely obese children. J Pediatr 139: 204–9

    Article  PubMed  CAS  Google Scholar 

  28. Holder JL, Jr., Butte NF, Zinn AR (2000) Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet 9: 101–8

    Article  PubMed  CAS  Google Scholar 

  29. Cummings DE, Schwartz MW (2003) Genetics and pathophysiology of human obesity. Annu Rev Med 54: 453–71

    Article  PubMed  CAS  Google Scholar 

  30. Hinney A, Vogel CI, Hebebrand J (2010) From monogenic to polygenic obesity: recent advances. Eur Child Adolesc Psychiatry 19: 297–310

    Article  PubMed  Google Scholar 

  31. Farooqi IS, Keogh JM, Yeo GS et al. (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348: 1085–95

    Article  PubMed  CAS  Google Scholar 

  32. Stutzmann F, Tan K, Vatin V et al. (2008) Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes 57: 2511–8

    Article  PubMed  CAS  Google Scholar 

  33. Bochukova EG, Huang N, Keogh J et al. (2010) Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463: 666–70

    Article  PubMed  CAS  Google Scholar 

  34. Walters RG, Jacquemont S, Valsesia A et al. (2010) A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 463: 671–5

    Article  PubMed  CAS  Google Scholar 

  35. Jacquemont S, Reymond A, Zufferey F et al. (2011) Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478: 97–102

    Article  PubMed  CAS  Google Scholar 

  36. Rankinen T, Zuberi A, Chagnon YC et al. (2006) The human obesity gene map: the 2005 update. Obesity (Silver Spring) 14: 529–644

    Article  Google Scholar 

  37. Ravussin E, Valencia ME, Esparza J et al. (1994) Effects of a traditional lifestyle on obesity in Pima Indians. Diabetes Care 17: 1067–74

    Article  PubMed  CAS  Google Scholar 

  38. Walley AJ, Asher JE, Froguel P (2009) The genetic contribution to non-syndromic human obesity. Nat Rev Genet 10: 431–42

    Article  PubMed  CAS  Google Scholar 

  39. Mammès O, Betoulle D, Aubert R et al. (1998) Novel polymorphisms in the 5’ region of the LEP gene: association with leptin levels and response to low-calorie diet in human obesity. Diabetes 47: 487–9

    Article  PubMed  Google Scholar 

  40. Mammès O, Betoulle D, Aubert R et al. (2000) Association of the G-2548A polymorphism in the 5′ region of the LEP gene with overweight. Ann Hum Genet 64: 391–4

    Article  PubMed  Google Scholar 

  41. Mammès O, Aubert R, Betoulle D et al. (2001) LEPR gene polymorphisms: associations with overweight, fat mass and response to diet in women. Eur J Clin Invest 31: 398–404

    Article  PubMed  Google Scholar 

  42. Li WD, Reed DR, Lee JH et al. (1999) Sequence variants in the 5′ flanking region of the leptin gene are associated with obesity in women. Ann Hum Genet 63: 227–34

    Article  PubMed  CAS  Google Scholar 

  43. Chagnon YC, Wilmore JH, Borecki IB et al. (2000) Associations between the leptin receptor gene and adiposity in middle-aged Caucasian males from the HERITAGE family study. J Clin Endocrinol Metab 85: 29–34

    Article  PubMed  CAS  Google Scholar 

  44. Hoffstedt J, Eriksson P, Mottagui-Tabar S, Arner P (2002) A polymorphism in the leptin promoter region (−2548 G/A) influences gene expression and adipose tissue secretion of leptin. Horm Metab Res 34: 355–9

    Article  PubMed  CAS  Google Scholar 

  45. Le Stunff C, Le Bihan C, Schork NJ, Bougneres P (2000) A common promoter variant of the leptin gene is associated with changes in the relationship between serum leptin and fat mass in obese girls. Diabetes 49: 2196–200

    Article  PubMed  Google Scholar 

  46. Benzinou M, Creemers JW, Choquet H et al. (2008) Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat Genet 40: 943–5

    Article  PubMed  CAS  Google Scholar 

  47. Cole SA, Butte NF, Voruganti VS et al. (2010) Evidence that multiple genetic variants of MC4R play a functional role in the regulation of energy expenditure and appetite in Hispanic children. Am J Clin Nutr 91: 191–9

    Article  PubMed  CAS  Google Scholar 

  48. Benzinou M, Walley A, Lobbens S et al. (2006) Bardet-Biedl syndrome gene variants are associated with both childhood and adult common obesity in French Caucasians. Diabetes 55: 2876–82

    Article  PubMed  CAS  Google Scholar 

  49. Lamri A, Abi Khalil C, Jaziri R et al. (2012) Dietary fat intake and polymorphisms at the PPARG locus modulate BMI and type 2 diabetes risk in the D.E.S.I.R. prospective study. Int J Obes (Lond) 36: 218–24

    Article  CAS  Google Scholar 

  50. Bouatia-Naji N, Meyre D, Lobbens S et al. (2006) ACDC/adiponectin polymorphisms are associated with severe childhood and adult obesity. Diabetes 55: 545–50

    Article  PubMed  CAS  Google Scholar 

  51. Fumeron F, Aubert R, Siddiq A et al. (2004) Adiponectin gene polymorphisms and adiponectin levels are independently associated with the development of hyperglycemia during a 3-year period: the epidemiologic data on the insulin resistance syndrome prospective study. Diabetes 53: 1150–7

    Article  PubMed  CAS  Google Scholar 

  52. Saunders CL, Chiodini BD, Sham P et al. (2007) Meta-analysis of genome-wide linkage studies in BMI and obesity. Obesity (Silver Spring) 15: 2263–75

    Article  Google Scholar 

  53. Frayling TM, Timpson NJ, Weedon MN et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316: 889–94

    Article  PubMed  CAS  Google Scholar 

  54. Dina C, Meyre D, Gallina S et al. (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39: 724–6

    Article  PubMed  CAS  Google Scholar 

  55. Church C, Moir L, McMurray F et al. (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42: 1086–92

    Article  PubMed  CAS  Google Scholar 

  56. Wahlen K, Sjolin E, Hoffstedt J (2008) The common rs9939609 gene variant of the fat mass-and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res 49: 607–11

    Article  PubMed  Google Scholar 

  57. Cecil JE, Tavendale R, Watt P et al. (2008) An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med 359: 2558–66

    Article  PubMed  CAS  Google Scholar 

  58. Wardle J, Carnell S, Haworth CM et al. (2008) Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab 93: 3640–3

    Article  PubMed  CAS  Google Scholar 

  59. Andreasen CH, Stender-Petersen KL, Mogensen MS et al. (2008) Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes 57: 95–101

    Article  PubMed  CAS  Google Scholar 

  60. Rampersaud E, Mitchell BD, Pollin TI et al. (2008) Physical activity and the association of common FTO gene variants with body mass index and obesity. Arch Intern Med 168: 1791–7

    Article  PubMed  Google Scholar 

  61. Boissel S, Reish O, Proulx K et al. (2009) Loss-of-function mutation in the dioxygenaseencoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 85: 106–11

    Article  PubMed  CAS  Google Scholar 

  62. Loos RJ, Lindgren CM, Li S et al. (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40: 768–75

    Article  PubMed  CAS  Google Scholar 

  63. Stutzmann F, Cauchi S, Durand E et al. (2009) Common genetic variation near MC4R is associated with eating behaviour patterns in European populations. Int J Obes (Lond) 33: 373–8

    Article  CAS  Google Scholar 

  64. Chambers JC, Elliott P, Zabaneh D et al. (2008) Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet 40: 716–8

    Article  PubMed  CAS  Google Scholar 

  65. Thorleifsson G, Walters GB, Gudbjartsson DF et al. (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41: 18–24

    Article  PubMed  CAS  Google Scholar 

  66. Willer CJ, Speliotes EK, Loos RJ et al. (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41: 25–34

    Article  PubMed  CAS  Google Scholar 

  67. Meyre D, Delplanque J, Chevre JC et al. (2009) Genome-wide association study for earlyonset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 41: 157–9

    Article  PubMed  CAS  Google Scholar 

  68. Speliotes EK, Willer CJ, Berndt SI et al. (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42: 937–48

    Article  PubMed  CAS  Google Scholar 

  69. Li S, Zhao JH, Luan J et al. (2010) Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am J Clin Nutr 91: 184–90

    Article  PubMed  CAS  Google Scholar 

  70. Sandholt CH, Sparso T, Grarup N et al. (2010) Combined analyses of 20 common obesity susceptibility variants. Diabetes 59: 1667–73

    Article  PubMed  CAS  Google Scholar 

  71. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8: 253–62

    Article  PubMed  CAS  Google Scholar 

  72. Herrera BM, Keildson S, Lindgren CM (2011) Genetics and epigenetics of obesity. Maturitas 69: 41–9

    Article  PubMed  CAS  Google Scholar 

  73. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121: 2126–32

    Article  PubMed  CAS  Google Scholar 

  74. The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–73

    Article  Google Scholar 

  75. Frayling TM (2007) Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet 8: 657–62

    Article  PubMed  CAS  Google Scholar 

  76. Cho YS, Go MJ, Kim YJ et al. (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41: 527–34

    Article  PubMed  CAS  Google Scholar 

  77. Lindgren CM, Heid IM, Randall JC et al. (2009) Genome-wide association scan metaanalysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet 5: e1000508

    Article  PubMed  Google Scholar 

  78. Scherag A, Dina C, Hinney A et al. (2010) Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups. PLoS Genet 6: e1000916

    Article  PubMed  Google Scholar 

  79. Heid IM, Jackson AU, Randall JC et al. (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42: 949–60

    Article  PubMed  CAS  Google Scholar 

  80. Choquet H, Meyre D (2011) Molecular basis of obesity: current status and future prospects. Curr Genomics 12: 154–68

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fumeron .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Fumeron, F. (2013). Génétique des obésités humaines. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_24

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics