Skip to main content

Dialogue entre tissus adipeux blancs et cerveau

  • Chapter
Physiologie et physiopathologie du tissu adipeux
  • 888 Accesses

Résumé

Des facteurs d’origine nerveuse jouent un rôle important dans le contrôle de l’homéostasie énergétique. Ainsi, les systèmes nerveux central et autonome sont impliqués dans la régulation de la balance d’énergie en régulant ces différents composants: prise alimentaire, dépense énergétique et stockage. Les activités métabolique et sécrétrice de différents tissus et organes sont effectivement sous la dépendance du système nerveux autonome. C’est le cas pour le foie, le pancréas et les glandes surrénales par exemple mais également pour les muscles. Les voies métaboliques et la sécrétion de ce qui est maintenant appelée adipokine par les cellules du tissu adipeux (TA) et en premier lieu les adipocytes sont également en partie régulées par l’activité du système nerveux sympathique (SNS) et parasympathique (SNP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Norman D, Mukherjee S, Symons D et al. (1988) Neuropeptides in interscapular and perirenal brown adipose tissue in the rat: a plurality of innervation. J Neurocytol 17: 305–11

    Article  PubMed  CAS  Google Scholar 

  2. Himms-Hagen J (1990) Brown adipose thermogenesis: interdisciplinary studies. FASEB J 4: 2890–8

    PubMed  CAS  Google Scholar 

  3. Ballantyne B, Raffery AT (1974) The intrinsic autonomic innervation of white adipose tissue. Cytobios 10: 187

    CAS  Google Scholar 

  4. Slavin BG, Ballard KW (1978) Morphological studies of the adrenergic innervation of white adipose tissue. Anta Rec 191: 377–89

    Article  CAS  Google Scholar 

  5. Rebuffé-Scrive M (1991) Neuroregulation of adipose tissue: molecular and hormonal mechanisms. Int J Obes 15: 83–6

    PubMed  Google Scholar 

  6. Youngstrom TG, Bartness TJ (1995) Cathecolaminergic innervation of white adipose tissue in the Siberian hamster. Am J Physiol 268: R744–51

    PubMed  CAS  Google Scholar 

  7. Bamshad M, Aoki VT, Adkison MG et al. (1998) Central nervous system origins of the sympathetic system outflow to white adipose tissue. Am J Physiol 276: R291–9

    Google Scholar 

  8. Bowers RR, Festuccia WTL, Song CK et al. (2004) Sympathetic innervation of adipose tissue and its regulation of fat cell number. Am. J Physiol 286: R1167–75

    CAS  Google Scholar 

  9. Stanley S, Pinto S, Segal J et al. (2010) Identification of a neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci 107: 7024–9

    Article  PubMed  CAS  Google Scholar 

  10. Potter K (1988) Neuropeptide Y as an autonomic neurotransmitter. Pharmacol Ther 37: 251

    Article  PubMed  CAS  Google Scholar 

  11. Giordano A, Morroni M, Santone G et al. (1996) Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation. J Neurocyto 25: 125–36.

    Article  CAS  Google Scholar 

  12. Castan I, Valet P, Voisin T et al. (1992) Identification and functional studies of a specific peptide YY-preferring receptor in dog adipocytes. Endocrinology 131: 1970–6

    Article  PubMed  CAS  Google Scholar 

  13. Castan I, Valet P, Quideau N et al. (1994) Antilipolytic effects of alpha 2-adrenergic agonists, neuropeptide Y, adenosine, and PGE1 in mammal adipocytes. Am J Physiol 266: R1141–7

    PubMed  CAS  Google Scholar 

  14. Serradeil-Le Gal C, Lafontan M, Raufaste D et al. (2000) Characterization of NPY receptors controlling lipolysis and leptin secretion in human adipocytes. FEBS Lett 475: 150–6

    Article  PubMed  CAS  Google Scholar 

  15. Bradley RL, Mansfield JPR, Maratos-Flier E (2005) Neuropeptides, including neuropeptide Y and melanocortins, mediate lipolysis in murine adipocytes. Obseity Res 13: 653–61

    Article  CAS  Google Scholar 

  16. Lee H, Jun DJ, Suh BC, Choi BH et al. (2005) Dual roles of purinergic receptors in insulin-stimulated leptin production and lipolysis in differentiated rat white adipocytes. J Biol Chem 280: 28556–63

    Article  PubMed  CAS  Google Scholar 

  17. Lafontan M, Berlan M (1993) Fat cell adrenergic receptor and the control of white and brown fat cell function. J Lipid Res 34: 1057–91

    PubMed  CAS  Google Scholar 

  18. Grujic D, Susulic VS, Harper ME et al. (1997) Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 272: 17686–93

    Article  PubMed  CAS  Google Scholar 

  19. Lafontan M, Berlan M (1995) Fat cell lpha2-adrenoceptors: the regulation of fat cell function and lipolysis. Endorine Rev 16: 716–38

    CAS  Google Scholar 

  20. Kreier F, Fliers E, Voshol PJ et al. (2002) Selective parasympathetic innervation of subcutaneous and intra-abdominal fat-functional implications. J Clin Invest 110: 1243–50.

    PubMed  CAS  Google Scholar 

  21. Liu RH, Mizuta M, Matsukura S (2004) The expression and functional role of nicotinic acetylcholine receptors in rat adipocytes. JPET 310: 52–8

    Article  CAS  Google Scholar 

  22. Berthoud HR, Fox EA, Neuhuber W (2006) Vagaries of adipose tissue innervation. Am J Physiol 291: R1240–2

    Article  CAS  Google Scholar 

  23. Giordano A, Song CK, Bowers RR et al. (2006) Hite adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am J Physiol 291: R1243–55

    CAS  Google Scholar 

  24. Kreier F, Buijs RM (2007) Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. Am J Physiol 293: R548–9

    CAS  Google Scholar 

  25. Brito MN, Brito NA, Baro DJ, Song CK, Bartness TJ (2007) Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology: 148: 5339–5347

    Article  PubMed  CAS  Google Scholar 

  26. Kreier F, Kap YS, Mettenleiter TC et al. (2006) Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinol 147: 1140–7

    Article  CAS  Google Scholar 

  27. Giordano A, Frontini A, Murano I et al. (2005) Regional-dependent increase of sympathetic innervation in rat white adipose tissue during prolonged fasting. J Histochem Cytochem 53: 679–87

    Article  PubMed  CAS  Google Scholar 

  28. Brito NA, Brito MN, Bartness TJ (2008) Differntial sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. Am J Physiol 294: R1445–52

    CAS  Google Scholar 

  29. Bartnes TJ, Shrestha Y, Vaughan CH et al. (2010) Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endo 318: 34–43

    Article  Google Scholar 

  30. Mauriège P, Galitzky J, Berlan M, Lafontan M (1987) Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Invest 17: 156–165

    Article  PubMed  Google Scholar 

  31. Mauriège P, De Pergola G, Berlan M, Lafontan M (1988) Human fat cell beta-adrenergic receptors: beta-agonist-dependent lipolytic responses and characterization of betaadrenergic binding sites on human fat cell membranes with highly selective beta 1-antagonists. J Lipid Res 29: 587–601

    PubMed  Google Scholar 

  32. Pénicaud L, Cousin B, Leloup C et al. (2000) The autonomic nervous system, adipose tissue plasticity and energy balance. Nutrition 16: 903–8

    Article  PubMed  Google Scholar 

  33. Wang S, Soni KG, Semache M et al. (2008) Lipolysis and the integrated physiology of lipid energy metabolism. Mol Genet Metab 95: 117–26

    Article  PubMed  CAS  Google Scholar 

  34. Shimazu T, Sudo M, Minokoshi Y, Takahashi A (1991) Role of the hypothalamus in insulin dependent glucose uptake in peripheral tissues. Brain Res Bull 27: 501–4

    Article  PubMed  CAS  Google Scholar 

  35. Shimizu Y, Nikami H, Saito M (1999) Sympathetic activation of glucose utilization in brown adipose tissue in rats. J Biochem 110: 688–92

    Google Scholar 

  36. Cousin B, Casteilla L, Lafontan M et al. (1993) Local sympathetic denervation of white adipose tissue in rats induces preadipocyte proliferation without noticeable changes in metabolism. Endocrinolog 33: 2255–62

    Article  Google Scholar 

  37. Halberg N, Wernstedt-Asterholm I, Scherer PE (2008) The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am 37: 753–68

    Article  PubMed  CAS  Google Scholar 

  38. Pénicaud L, Cousin B, Laharrague P et al. (2002) Adipose tissues as part of the immune system: role of leptin and cytokines. In Kordon C. (ed) Brain somatic cross-talk and the central control of metabolism. Springer Verlag p. 81

    Google Scholar 

  39. Cammisotto PG, Bukowiecki LJ (2002) Mechanisms of leptin secretion from white adipocytes. Am J Physiol 283: C244–50

    CAS  Google Scholar 

  40. Ricci MR, Lee MJ, Russell CD et al. (2005) Isoproterenol decreases leptin release from rat and human adipose tissue through posttranscriptional mechanisms. Am J Physiol 288: E798–804.

    CAS  Google Scholar 

  41. Turtzo LC, Marx R, Lane MD (2001) Cross-talk between sympathetic neurons and adipocytes in coculture. Proc Natl Acad Sci USA 98: 12385–90

    Article  PubMed  CAS  Google Scholar 

  42. Lee MJ, Fried SK (2009) Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am J Physiol Endocrinol Metab 296: E1230–8

    Article  PubMed  CAS  Google Scholar 

  43. Fu L, Isobe K, Zeng Q et al. (2007) Beta-adrenoceptor agonists downregulate adiponectin, but upregulate adiponectin receptor 2 and tumor necrosis factor-alpha expression in adipocytes. Eur J Pharmacol 569: 155–62

    Article  PubMed  CAS  Google Scholar 

  44. Mohamed-Ali V, Bulmer K, Clarke D et al. (2000) Beta-Adrenergic regulation of proinflammatory cytokines in humans. Int J Obes Relat Metab Disord 24 Suppl 2: S154–5

    Article  PubMed  CAS  Google Scholar 

  45. Vicennati V, Vottero A, Friedman C, Papanicolaou DA (2002) Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obes Relat Metab Disord 6: 905–11

    Google Scholar 

  46. Cousin B, Bascands-Viguerie N, Kassis N et al. (1996) Cellular changes during cold acclimatation in adipose tissues. J Cell Physiol 167: 285–9

    Article  PubMed  CAS  Google Scholar 

  47. Jones DD, Ramsay TG, Hausman GJ, Martin RJ (1992) Norepinephrine inhibits rat pre-adipocyte proliferation. Int J Obes 16: 349–54

    CAS  Google Scholar 

  48. Foster MT, Bartness TJ (2006) Sympathetic but not sensory denervation stimulates white adipocyte proliferation. Am J Physiol 291: 1630–7

    Google Scholar 

  49. Ruschke K, Ebelt H, Klöting N et al. (2009) Defective peripheral nerve development is linked to abnormal architecture and metabolic activity of adipose tissue in Nscl-2 mutant mice. PLoS One 4: e5516

    Article  PubMed  CAS  Google Scholar 

  50. Cao L, Choi EY, Liu X et al. (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab 14: 324–38

    Article  PubMed  CAS  Google Scholar 

  51. Chao PT, Yang L, Aja S et al. (2011) Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 13: 573–83

    Article  PubMed  CAS  Google Scholar 

  52. Jimenez M, BarTA brunelli G, Allevi R, Cinti S et al. (2003) 3-adrenoceptor knockout in C57BL/6J mice depresses the occurence of brown adipocytes in white fat. Eur J Biochem 270: 699–705

    Article  PubMed  CAS  Google Scholar 

  53. BarTA brunelli G, Murano I, Madsen L et al. (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J. Physiol. Endocrinol Metab 298: E1244–53

    Article  CAS  Google Scholar 

  54. Kuo LE, Kitlinska JB, Tilan JU et al. (2007) Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nature Med 13: 803–11

    Article  PubMed  CAS  Google Scholar 

  55. Ruohonen ST, Pesonen U, Moritz N et al. (2008) Transgenic mice overexpressing neuropeptide Y in noradrenergic neurons. A novel model of increased adiposity and impaired glucose tolerance. Diabetes 57: 1517–25

    Article  PubMed  CAS  Google Scholar 

  56. Yang K, Guan H, Arany E et al. (2008) Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. The FASEB J 22: 2452–64

    Article  CAS  Google Scholar 

  57. Nisoli E, Briscini L, Tonello C et al. (1997) Tumor necrosis factor-alpha induces apoptosis in rat brown adipocytes. Cell Death Differ 4: 771–8

    Article  PubMed  CAS  Google Scholar 

  58. Navarro P, Valverde AM, Benito M, Lorenzo M (1998) Insulin/IGF-I rescues immortilazed brown adipocytes from apoptosis down-regulating Bcl-xS expression, in a PI 3 kinaseand map kinase dependent manner. Exp Cell Res 15: 213

    Article  Google Scholar 

  59. Qian H, Azain MJ, Compton MM et al. (1998) Brain administration of leptin causes deletion of adipocytes by apoptosis. Endocrinol 139: 791–4

    Article  CAS  Google Scholar 

  60. Hamrick MW, Della Fera MA, Choi YH et al. (2007) Injections of leptin into rat ventromedial hypothalamus increase adipocyte apoptosis in peripheral fat and in bone marrow. Cell Tissue Res 327: 133–41

    Article  PubMed  CAS  Google Scholar 

  61. Gullicksen PS, Della-Fera MA, Baile CA (2003) Leptin-induced adipose apoptosis: Implications for body weight regulation. Apoptosis 8: 327–35

    Article  PubMed  CAS  Google Scholar 

  62. Haque MS, Minokoshi Y, Hamai M et al. (1999) Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes 48: 1706–12

    Article  PubMed  CAS  Google Scholar 

  63. Scarpace PJ, Matheny M (1998) Leptin induction of UCP1 gene expression is dependent on sympathetic innervation. Am J Physiol 275: E259–64

    PubMed  CAS  Google Scholar 

  64. Kennedy GC (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond 140: 578–96

    Article  PubMed  CAS  Google Scholar 

  65. Wood S, Lotter E, Mc Kay L, Porte DJ (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282: 503–5

    Article  Google Scholar 

  66. Porte D Jr, Baskin DG, Schwartz MW (2005) Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54: 1264–76

    Article  PubMed  CAS  Google Scholar 

  67. Zhang Y, Proenca R, Maffei M et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–32

    Article  PubMed  CAS  Google Scholar 

  68. Campfield LA, Smith FJ, Burn P (1996) The ob protein (leptin) pathway-a link between adipose tissue mass and central neural networks. Horm Metab Res 28: 619–32

    Article  PubMed  CAS  Google Scholar 

  69. Tartaglia IA, Dembski M, Weng X et al. (1995) Identification and expression cloning of a leptin receptor OB-R. Cell 83: 1263–71

    Article  PubMed  CAS  Google Scholar 

  70. Elmquist JK, Bjorbaek C, Ahima RS et al. (1998) Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395: 535–47

    Article  PubMed  CAS  Google Scholar 

  71. Halaas JL, Gajiwala KS, Maffei M et al. (1995) Weight reducing effect of the plasma protein encoded by the obsess gene. Science 269: 543–6

    Article  PubMed  CAS  Google Scholar 

  72. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effect of the obese gene product on body weight regulation in ob/ob mice. Science 269: 540–3

    Article  PubMed  CAS  Google Scholar 

  73. Montague CT, Farooqi IS, Whitehead JP et al. (1999) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997 387: 903–8

    Google Scholar 

  74. Farooqi IS, Jebb SA, Langmac G et al. (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New Engl J Med 341: 879–84

    Article  PubMed  CAS  Google Scholar 

  75. Considine RV, Sinha MK, Heiman ML et al. (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New Engl J Med 334: 292–5

    Article  PubMed  CAS  Google Scholar 

  76. Schulz C, Paulus K, Lehnert H (2010) Adipocyte-brain: crosstalk. Results Probl Cell Differ 52: 189–201

    Article  PubMed  CAS  Google Scholar 

  77. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26: 439–51

    Article  PubMed  CAS  Google Scholar 

  78. Kubota N, Yano W, Kubota T et al. (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6: 55–68

    Article  PubMed  CAS  Google Scholar 

  79. Kusminski CM, McTernan PG, Schraw T et al. (2007) Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia 50: 634–42

    Article  PubMed  CAS  Google Scholar 

  80. Guillod-Maximin E, Roy AF, Vacher CM et al. (2009) Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J Endocrinol 200: 93–105

    Article  PubMed  CAS  Google Scholar 

  81. Qi Y, Takahashi N, Hileman SM, Patel HR et al. (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10: 524–9

    Article  PubMed  CAS  Google Scholar 

  82. Coope A, Milanski M, Araujo EP et al. (2008) AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett. 82: 1471–6

    Article  CAS  Google Scholar 

  83. Oh-I S, Shimizu H, Satoh T et al. (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443: 709–12

    Article  PubMed  CAS  Google Scholar 

  84. Shimizu H, Oh I, Hashimoto K et al. (2009) Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology 150: 662–71

    Article  PubMed  CAS  Google Scholar 

  85. Fukuhara A, Matsuda M, Nishizawa M et al. (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307: 426–30

    Article  PubMed  CAS  Google Scholar 

  86. Cline MA, Nandar W, Prall BC et al. (2008) Central visfatin causes orexigenic effects in chicks. Behav. Brain Res 186: 293–7

    Article  PubMed  CAS  Google Scholar 

  87. Hallschmid M, Randeva H, Tan BK et al. (2009) Relationship between cerebrospinal fluid visfatin (PBEF/Nampt) levels and adiposity in humans. Diabetes 58: 637–40

    Article  PubMed  CAS  Google Scholar 

  88. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as ana endocrine organ. Mol Cell Endocrinol 316: 129–39

    Article  PubMed  CAS  Google Scholar 

  89. Buchanan JB, Johnson RW (2007) Regulation of food intake by inflammatory cytokines in the brain. Neuroendocrinology 86: 183–90

    Article  PubMed  CAS  Google Scholar 

  90. Langhans W (2007) Signals generating anorexia during acute illness. Proc Nutr Soc 66: 321–30

    Article  PubMed  CAS  Google Scholar 

  91. Dantzer R, Bluthé RM, Gheusi G et al. (1998) Molecular basis of sickness behavior. Ann NY Acad Sci 856: 132–8

    Article  PubMed  CAS  Google Scholar 

  92. Jordan SD, Könner AC, Brüning JC (2010) Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 67: 3255–73

    Article  PubMed  CAS  Google Scholar 

  93. Lam TK (2010) Neuronal regulation of homeostasis by nutrient sensing. Nat Med 16: 392–5

    Article  PubMed  CAS  Google Scholar 

  94. Pénicaud L, Leloup C, Fioramonti X et al. (2006) Brain glucose sensing: a subtle mechanism. Curr Opin Clin Nutr Metab Care 9: 458–62

    Article  PubMed  Google Scholar 

  95. Wang R, Cruciani-Guglielmacci C, Migrenne S et al. (2006) Effects of oleic acid on disctint populations of neurons in the hypothalamus arcuate nucleux are dependent on extracellular glucose levels. J Neurophysiol 95: 1491–8

    Article  PubMed  CAS  Google Scholar 

  96. Fishman RB Dark J (1987) Sensory innervation of white adipose tissue. Am J Physiol 253: R042–4

    Google Scholar 

  97. Song CK, Schwartz GJ, Bartness TJ (2009) Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am J Physiol 296: R501–11

    CAS  Google Scholar 

  98. Shi H, Song CK, Giordano A, Cinti S, Bartness TJ (2005) Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. Am J Physiol 288: R1028–37

    Article  CAS  Google Scholar 

  99. Shi H, Bartness TJ (2005) White adipose tissue sensory nerve denervation mimics lipectomy-induced compensatory increases in adiposity. Am J Physiol 289: R514–20

    CAS  Google Scholar 

  100. Niijima A (1998) Afferent signals from leptin sensors in the white adipose tissue of the epididymis, and their reflex effect in the rat. J Auton Nerv Syst 73: 19–25

    Article  PubMed  CAS  Google Scholar 

  101. Niijima A (1999) Reflex effects from leptin sensors in the white adipose tissue of the epididymis to the efferent activity of the sympathetic and vagus nerve in the rat. Neurosci Lett 262: 125–8

    Article  PubMed  CAS  Google Scholar 

  102. Song CK, Schwartz GJ, Lester B et al. (2010) Leptin injected into white adipose tissue stimulates sensory nerves. In: Neuroscience meeting planner, Society for Neuroscience, San Diego

    Google Scholar 

  103. Prunet-Marcassus B, Cousin B et al. (2006) From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res 312: 727–36

    Article  PubMed  CAS  Google Scholar 

  104. Crisan M, Yap S, Casteilla L et al. (2008) A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Stem Cells 3: 301–13

    Article  CAS  Google Scholar 

  105. Elabd C, Chiellini C, Carmona M et al. (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27: 2753–60

    Article  PubMed  CAS  Google Scholar 

  106. Casteilla L Dani C (2006) Adipose tissue-derived cells: from physiology to regenerative medicine. Diabetes Metab 32: 393–401

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pénicaud .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Pénicaud, L., Lorsignol, A. (2013). Dialogue entre tissus adipeux blancs et cerveau. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_12

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics