Skip to main content
  • 1398 Accesses

Abstrait

Le tissu musculaire squelettique est une structure hautement organisée et spécialisée, réalisant une fonction complexe, la contraction, sous le contrôle des motoneurones du système nerveux central volontaire. Les contractions musculaires doivent fournir un travail intense à un coût énergétique acceptable, en respectant des impératifs de rapidité, répétition, précision et endurance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76: 371–423

    PubMed  CAS  Google Scholar 

  2. Trinnick J (1994) Titin and nebulin: protein rulers in muscle? Trends Biochem Sci 19: 405–8

    Article  Google Scholar 

  3. Gauthier GF (1986) Skeletal muscle fiber types. In: Engel AG, Banker BQ (eds) Myology, McGraw-Hill, New York, p 255–83

    Google Scholar 

  4. Grimby G (1995) Muscle performance and structure in the elderly as studied cross-sectionnally and longitudinally. J Gerontol 50A: 17–22

    Google Scholar 

  5. Brown M, Ross TP, Holloszy JO (1992) Effects of ageing and exercise on soleus and extensor digitorum longus muscles of female rats. Mech Ageing Dev 63: 69–77

    Article  PubMed  CAS  Google Scholar 

  6. Coggan AR, Spina RJ, King DS et al. (1992) Skeletal muscle adaptations to endurance training in 60-to 70-year-old men and women. J Appl Physiol 72: 1780–6

    PubMed  CAS  Google Scholar 

  7. Ama PFM, Simoneau JA, Boulay MR et al. (1986) Skeletal muscle characteristics in sedentary black and caucasian males. J Appl Physiol 61: 1758–61

    PubMed  CAS  Google Scholar 

  8. Astrup A, Bülow J, Madsen J, Christensen NJ (1985) Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol 248: E507–15

    PubMed  CAS  Google Scholar 

  9. Baker PGB, Mottram RF (1973) Metabolism of exercising and resting human skeletal muscle in the postprandial and fasting state. Clin Sci 44: 479–91

    PubMed  CAS  Google Scholar 

  10. Zurlo F, Larson K, Bogardus C, Ravussin E (1990) Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 86: 1423–7

    PubMed  CAS  Google Scholar 

  11. Zurlo F, Nemeth PM, Choski RM et al. (1994) Whole body energy metabolism and skeletal muscle biochemical characteristics. Metabolism 43: 481–6

    Article  PubMed  CAS  Google Scholar 

  12. Henrickson J (1992) Energy metabolism in muscle: its possible role in the adaptation to energy deficiency. In: Kinney JM, Tuchker HN (eds) Energy metabolism: Tissue determinants and cellular corollaries. Raven Press, New York, p 345–63

    Google Scholar 

  13. Emorine LJ, Marullo S, Briend-Sutren MM et al. (1989) Molecular characterisation of the human β3-adrenergic receptor. Science 245: 1118–21

    Article  PubMed  CAS  Google Scholar 

  14. Clément K, Vaisse C, Manning BJ et al. Genetic variation in the β3-adrenergic receptor and in increased capacity to gain weight in patients with morbid obesity. N Engl J Med 333: 352–4

    Google Scholar 

  15. Fagher B, Monti M, Theander S (1989) Microcalorimetric study of muscle and platelet thermogenesis in anorexia nervosa and bulimia. Am J Clin Nutr 49: 476–81

    PubMed  CAS  Google Scholar 

  16. Nichols BL, Barnes DJ, Ashworth A et al. (1968) Relationship between total body and muscle respiratory rate in infants with malnutrition. Nature 217: 475–6

    Article  PubMed  CAS  Google Scholar 

  17. Fleury C, Neverova M, Collins S et al. (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nature Genetics 15: 269–72

    Article  PubMed  CAS  Google Scholar 

  18. Astrup A, Toubro S, Dalgaard LT et al. (1999) Impact of the v/v 55 polymorphism of the uncoupling protein 2 gene on 24-h energy expenditure and substrate oxidation. Int J Obesity 23: 1030–4

    Article  CAS  Google Scholar 

  19. Buemann B, Schierning B, Toubro S et al. (2001) The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obesity 25: 467–71

    Article  CAS  Google Scholar 

  20. Barbe P, Larrouy D, Boulanger C et al. (2001) Triiodothyronine-mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J 15: 13–5

    PubMed  CAS  Google Scholar 

  21. Boss O, Samec S, Paoloni-Giacobino A et al. (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408: 39–42

    Article  PubMed  CAS  Google Scholar 

  22. Bao S, Kennedy A, Wojciechowski B et al. (1998) Expression of mRNAs encoding uncoupling proteins in human skeletal muscle. Diabetes 47: 1935–40

    Article  PubMed  CAS  Google Scholar 

  23. Schrauwen P, Xia J, Bogardus C et al. (1999) Skeletal muscle UCP3 expression is a determinant of energy expenditure in Pima Indians. Diabetes 48: 146–9

    Article  PubMed  CAS  Google Scholar 

  24. Schrauwen P, Hesselink M (2002) UCP2 and UCP3 in muscle controlling body metabolism. J Exp Biol 205: 2275–85

    PubMed  CAS  Google Scholar 

  25. Schrauwen P, Hesselink M, Blaak MKC et al. (2001) Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 50: 2870–3

    Article  PubMed  CAS  Google Scholar 

  26. Bradford BL, Spiegelman BM (2000) Towards a molecular understanding of adaptative thermogenesis. Nature 404: 652–60

    Google Scholar 

  27. Dulloo AG, Samec S, Seydoux J (2000) Uncoupling protein 3 and fatty acid metabolism. Biochem Soc Trans 29: 785–91

    Article  Google Scholar 

  28. Segal KR, Presta E, Gutin B (1984) Thermic effect of food during graded exercise in normal weight and obese men. Am J Clin Nutr 40: 995–1000

    PubMed  CAS  Google Scholar 

  29. Colberg SR, Simoneau JA, Thaete FL, Kelly DE (1995) Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Invest 95: 1846–53

    PubMed  CAS  Google Scholar 

  30. Kelley DE, Mandarino LJ (1990) Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in noninsulin-dependent diabetes mellitus. J Clin Invest 86: 1999–2007

    PubMed  CAS  Google Scholar 

  31. Mandarino LJ, Consoli A, Jain A, Kelley DE (1996) Interaction of carbohydrate and fat fuels in human skeletal muscle: impact of obesity in NIDDM. Am J Physiol 270: E463–70

    PubMed  CAS  Google Scholar 

  32. Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87: 99–109

    Article  PubMed  CAS  Google Scholar 

  33. Tamori Y, Sakaue H, Kasuga M (2006) RBP4, an unexpected adipokine. Nat Med 12: 30–1

    Article  PubMed  CAS  Google Scholar 

  34. Yang Q, Graham TE, Mody N et al. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436: 356–62

    Article  PubMed  CAS  Google Scholar 

  35. Groop LC, Bonadonna RC, Shank M et al. (1991) Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man. J Clin Invest 87: 83–9

    PubMed  CAS  Google Scholar 

  36. Mandarino LJ, Consoli A, Jain A, Kelley DE (1993) Differential regulation of intracellular glucose metabolism by glucose and insulin in human muscle. Am J Physiol 265: E898–905

    PubMed  CAS  Google Scholar 

  37. Kelley DE, Mokan M, Simoneau JA, Mandarino LJ (1993) Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 92: 91–8

    PubMed  CAS  Google Scholar 

  38. Walker M, Fulcher GR, Sum CF, Alberti KGMM (1991) Effect of glycemia and nonesterified fatty acids on forearm glucose uptake in normal human. Am J Physiol 261: E304–11

    PubMed  CAS  Google Scholar 

  39. Bevilacqua S, Bussigoli G, Bonadonna R et al. (1990) Operation of Randle’s cycle in patients with NIDDM. Diabetes 39: 383–9

    Article  PubMed  CAS  Google Scholar 

  40. Vaag A, Skött P, Damsbo P et al. (1991) Effect of the antilipolytic nicotinic acid analogue acipimox on whole body and skeletal muscle metabolism in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 88: 1282–90

    PubMed  CAS  Google Scholar 

  41. Wade AJ, Marbut MM, Round JM (1990) Muscle fibre type and aetiology of obesity. Lancet 335: 805–8

    Article  PubMed  CAS  Google Scholar 

  42. Ferraro RT, Eckel RH, Larson DE et al. (1993) Relationship between skeletal muscle lipoprotein lipase and 24-hour macronutriment oxidation. J Clin Invest 92: 441–5

    PubMed  CAS  Google Scholar 

  43. Borkman M, Storlien LH, Pan DA et al. (1993) The relation between insulin sensitivity and the fatty-acid composition of skeletal muscle phospholipids. N Engl J Med 328: 238–44

    Article  PubMed  CAS  Google Scholar 

  44. Pan DA, Lillioja S, Milner MR et al. (1995) Skeletal muscle membrane composition is related to adiposity and insulin action. J Clin Invest 96: 2802–8

    PubMed  CAS  Google Scholar 

  45. Pan DA, Storlien LH (1993) Effect of dietary lipid profile on the metabolism of omega-3 fatty acids: implications for obesity prevention. In: Drevon CA, Baksaas I, Krokan HE (eds) Omega-3 fatty acids: metabolism and biological effects. Birkhauser Verlag, Basel, p 97–106

    Google Scholar 

  46. Muoio DM, Dohn GL, Fiedoreck FT et al. (1997) Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46: 1360–3

    Article  PubMed  CAS  Google Scholar 

  47. Steinberg GR, Parolin ML, Heigenhauser GJ, Dyck DJ (2002) Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 283: E187–92

    PubMed  CAS  Google Scholar 

  48. Steinberg GR, Dyck DJ (2000) Development of leptin resistance in rat soleus muscle in response to high-fat diet. Am J Physiol Endocrinol Metab 279: E1374–82

    PubMed  CAS  Google Scholar 

  49. Lau R, Blinn WD, Bonen A, Dyck DJ (2000) Stimulatory effects of leptin and muscle contraction on fatty acid metabolism are not additive. Am J Physiol Endocrinol Metab 281: E122–9

    Google Scholar 

  50. Minokoshi Y, Kim YB, Peroni OD et al. (2002) Leptin stimulates fatty acid oxydation by activating AMP-activated protein kinase. Nature 415: 339–43

    Article  PubMed  CAS  Google Scholar 

  51. Atkinson LL, Fischer MA, Lopaschuk GD (2002) Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem 277: 29424–30

    Article  PubMed  CAS  Google Scholar 

  52. Tawa NE Jr, Goldberg AL (1994) Protein and amino acid metabolism in muscle. In: Engel AG, Franzini-Amstrong C (eds) Myology. McGraw-Hill, New York, p 683–707

    Google Scholar 

  53. May ME, Buse MG (1989) Effects of branched-chain amino acids on protein turnover. Diabetes/Metab Rev 5: 227–45

    Article  CAS  Google Scholar 

  54. Aftring RP, Miller WJ, Buse MG (1998) Effects of diabetes and starvation on skeletal muscle branched-chain a-keto acid dehydrogenase activity. Am J Physiol 254: E292–300

    Google Scholar 

  55. England BK, Greiber S, Mitch WE et al. (1995) Rat muscle branched-chain ketoacid dehydrogenase activity and mRNAs increase with extracellular acidemia. Am J Physiol 268: C1395–400

    PubMed  CAS  Google Scholar 

  56. Nawabi MD, Block KP, Chakrabarti MC, Buse MG (1990) Administration of endotoxin, tumor necrosis factor, or interleukin 1 to rats activates skeletal muscle branched-chain alphaketo acid dehydrogenase. J Clin Invest 85: 256–63

    PubMed  CAS  Google Scholar 

  57. Meynial-Denis D, Mignon M, Miri A et al. (1996) Glutamine synthetase induction by glucocorticoids is preserved in skeletal muscle of aged rats. Am J Physiol 271: E1061–6

    PubMed  CAS  Google Scholar 

  58. Meynial-Denis D, Chavaroux A, Foucat L et al. (1997) Contribution of proteolysis and de novo synthesis to alanine production in diabetic rat skeletal muscle: a 15N/1H nuclear magnetic resonance study. Diabetologia 40: 1159–65

    Article  PubMed  CAS  Google Scholar 

  59. Cooney RN, Kimball SR, Vary TC (1997) Regulation of skeletal muscle protein turnover during sepsis: mechanisms and mediators. Shock 7: 1–16

    Article  PubMed  CAS  Google Scholar 

  60. Kandarian SC, Jackman RW (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33: 155–65

    Article  PubMed  CAS  Google Scholar 

  61. Rennie MJ, Edwards RH, Emery PW et al. (1983) Depressed protein synthesis is the dominant characteristic of muscle wasting and cachexia. Clin Physiol 3: 387–98

    PubMed  CAS  Google Scholar 

  62. Attaix D, Taillandier D (1998) The critical role of the ubiquitin-proteasome pathway in muscle wasting in comparison to lysosomal and Ca2+-dependent systems. In: Rivett AJ (ed) Intracellular Protein Degradation. Adv Mol Cell Biol 27: 235–66

    Google Scholar 

  63. Attaix D, Ventadour S, Codran A et al. (2005) The ubiquitin-proteasome system and skeletal muscle wasting. Essays Biochem 41: 173–86

    PubMed  CAS  Google Scholar 

  64. Hasselgren PO, Fischer JE (2001) Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg 233: 9–17

    Article  PubMed  CAS  Google Scholar 

  65. Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 335: 1897–905

    Article  PubMed  CAS  Google Scholar 

  66. Voisin L, Breuillé D, Combaret L et al. (1996) Muscle wasting in a rat model of long lasting sepsis results from the activation of lysosomal, Ca2+-activated and ubiquitin-proteasome proteolytic pathways. J Clin Invest 97: 1610–7

    PubMed  CAS  Google Scholar 

  67. Combaret L, Taillandier D, Voisin L et al. (1996) No alteration in gene expression of components of the ubiquitin-proteasome proteolytic pathway in dystrophin-deficient muscles. FEBS Lett 393: 292–6

    Article  PubMed  CAS  Google Scholar 

  68. Temparis S, Asensi M, Taillandier D et al. (1994) Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumorbearing rats. Cancer Res 54: 5568–73

    PubMed  CAS  Google Scholar 

  69. Mitch WE, Medina R, Grieber S et al. (1994) Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest 93: 2127–33

    PubMed  CAS  Google Scholar 

  70. Dardevet D, Sornet C, Taillandier D et al. (1995) Sensitivity and protein turnover response to glucorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest 96: 2113–9

    PubMed  CAS  Google Scholar 

  71. Taillandier D, Aurousseau E, Meynial-Denis D et al. (1996) Coordinate activation of lysosomal, Ca2+-activated and ATP-ubiquitin-dependent proteinases in the unweighted rat soleus muscle. Biochem J 316: 65–72

    PubMed  CAS  Google Scholar 

  72. Deval C, Mordier S, Obled C et al. (2001) Identification of cathepsin L as a differentially-expressed message associated with skeletal muscle wasting. Biochem J 360: 143–50

    Article  PubMed  CAS  Google Scholar 

  73. Mansoor O, Beaufrère B, Boirie Y et al. (1996) Increased mRNA levels for components of the lysosomal, Ca2+-activated and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients. Proc Natl Acad Sci USA 93: 2714–8

    Article  PubMed  CAS  Google Scholar 

  74. Seiffert M, Gosenca D, Ponelies N et al. (2006) Regulation of the ubiquitin proteasome system in mechanically injured human skeletal muscle. Physiol Res 2006 (sous presse)

    Google Scholar 

  75. Tiao G, Hobler S, Wang JJ et al. (1997) Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J Clin Invest 99: 163–8

    PubMed  CAS  Google Scholar 

  76. Bossola M, Muscaritoli M, Costelli P et al. (2003) Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann Surg 237: 384–9

    Article  PubMed  Google Scholar 

  77. Williams AB, Sun X, Fischer JE et al. (1999) The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 126: 744–9

    PubMed  CAS  Google Scholar 

  78. Jones SW, Hill RJ, Krasney PA et al. (2004) Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J 18: 1025–7

    PubMed  CAS  Google Scholar 

  79. Pickering WP, Price SR, Bircher G et al. (2002) Nutrition in CAPD: serum bicarbonate and the ubiquitin-proteasome system in muscle. Kidney Int 61: 1286–92

    Article  PubMed  CAS  Google Scholar 

  80. Leger B, Vergani L, Soraru G et al. (2006) Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals, a reduction in Akt and an increase in atrogin-1. FASEB J 20: 583–5

    PubMed  CAS  Google Scholar 

  81. Rallière C, Tauveron I, Taillandier D et al. (1997) Glucocorticoids do not regulate the expression of proteolytic genes in skeletal muscle from Cushing’s syndrome patients. J Clin Endocrinol Metab 82: 3161–4

    Article  PubMed  Google Scholar 

  82. Larbaud D, Balage M, Taillandier D et al. (2001) Differential regulation of the lysosomal, Ca2+-dependent and ubiquitin/proteasome-dependent proteolytic pathways in fasttwitch and slow-twitch rat muscle following hyperinsulinaemia. Clin Sci 101: 551–8

    Article  PubMed  CAS  Google Scholar 

  83. Hall-Angeras M, Angeras U, Zamir O et al. (1991) Effect of the glucocorticoid receptor antagonist RU 38486 on muscle protein breakdown in sepsis. Surgery 109: 468–73

    PubMed  CAS  Google Scholar 

  84. Attaix D, Ventadour S, Taillandier D, Combaret L (2005) The ubiquitin-proteasome pathway: limitations and opportunities. J Support Oncol 3: 221–2

    PubMed  Google Scholar 

  85. Breuillé D, Farge MC, Rosé F et al. (1993) Pentoxifylline decreases body weight loss and muscle protein wasting characteristics of sepsis. Am J Physiol 265: E660–6

    PubMed  Google Scholar 

  86. Combaret L, Tilignac T, Claustre A et al. (2002) Torbafylline (HWA 448) inhibits enhanced skeletal muscle ubiquitin-proteasome-dependent proteolysis in cancer and septic rats. Biochem J 361: 185–92

    Article  PubMed  CAS  Google Scholar 

  87. Todorov P, Cariuk P, McDevitt T et al. (1996) Characterization of a cancer cachectic factor. Nature 379: 739–42

    Article  PubMed  CAS  Google Scholar 

  88. Combaret L, Dardevet D, Rieu I et al. (2005) A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle. J Physiol 569: 489–99

    Article  PubMed  CAS  Google Scholar 

  89. Finsterer J (2004) Mitochondriopathies Eur J Neurol 11 163–86

    Article  PubMed  CAS  Google Scholar 

  90. Munnich A (1997) Chaîne respiratoire et ADN mitochondrial. Journ Annu Diabetol Hotel Dieu: 1–15

    Google Scholar 

  91. Vialettes B, Narbonne H, Silvestre-Aillaud P et al. Expression clinique des diabètes par cytopathie mitochondriale. Journ Annu Diabetol Hotel Dieu: 17–23

    Google Scholar 

  92. Di Donato S (1994) Disorders of lipid metabolism affecting skeletal muscle. Carnitine deficiency syndromes, defects in the catabolic pathway, and Chanarin disease. In: Engel AG, Franzini-Amstrong C (eds) Myology. McGraw-Hill, New York, p 1587–609

    Google Scholar 

  93. Deschauer M, Wieser T, Zierz S (2005) Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol 62: 37–41

    Article  PubMed  Google Scholar 

  94. Kling L, Straub V, Neudorf U, Voit T (2005) Enzyme replacement therapy in classical infantile pompe disease: results of a ten-month follow-up study. Neuropediatrics 36: 6–11

    Article  CAS  Google Scholar 

  95. DiMauro S, Lamperti C (2001) Muscle glycogenoses. Muscle Nerve 24: 984–99

    Article  Google Scholar 

  96. Hankard R, Gottrand F, Turck D et al. (1996) Resting energy expenditure and energy substrate utilization in children with Duchenne muscular dystrophy. Pediatr Res 40: 29–33

    Article  PubMed  CAS  Google Scholar 

  97. Even PC, Decoury A, Chinet A (1994) Defective regulation of energy metabolism in mdx-mouse skeletal muscles Biochem J 304: 649–54

    PubMed  CAS  Google Scholar 

  98. Mokhtarian A, Even PC (1996) Effect of intraperitoneal injection of glucose on glucose oxydation and energy expenditure in the mdx-mouse model of Duchenne muscular dystrophy. Pflügers Arch 432: 379–85

    Article  PubMed  CAS  Google Scholar 

  99. Mokhtarian A, Decrouy A, Chinet A, Even PC (1996) Components of energy expenditure in the mdx-mouse model of Duchenne muscular dystrophy. Pflügers Arch 431: 527–32

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Couet, C., Attaix, D. (2007). Muscle. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_24

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics