Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1639 Accesses

Abstract

A detailed account of the max-algebraic eigenvalue-eigenvector theory for square matrices over reals extended by minus infinity is provided. This theory is similar (but not identical) with the Perron-Frobenius theory for non-negative matrices in linear algebra. The algorithms presented and proved here enable us to find all eigenvalues and bases of all eigenspaces in almost linear time. These results are of fundamental importance for solving the reachability problems in Chap. 8 and elsewhere.

The chapter starts with definitions and basic properties of the eigenproblem, then continues by proving one of the most important results in max-algebra, namely that for every matrix the maximum cycle mean is the greatest (principal) eigenvalue. It is shown how the corresponding (principal) eigenspace is described. Next a spectral theorem is presented, that fully describes all eigenvalues of a matrix and enables us to find them. It also makes it possible to characterize matrices with finite eigenvectors. Finally, it is explained how to efficiently describe all eigenvectors of a matrix.

A number of properties, such as the existence of a common eigenvector of commuting matrices, is proved using the presented eigenvalue-eigenvector theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akian, M., Gaubert, S., & Walsh, C. (2005). Discrete max-plus spectral theory. ESI Preprint 1485. In G. L. Litvinov & V. P. Maslov (Eds.), Contemporary mathematics series : Vol. 377. Idempotent mathematics and mathematical physics (pp. 53–77). Providence: AMS.

    Chapter  Google Scholar 

  2. Bapat, R. B. (1995). Pattern properties and spectral inequalities in max algebra. SIAM Journal on Matrix Analysis and Applications, 16, 964–976.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bapat, R. B., & Raghavan, T. E. S. (1997). Nonnegative matrices and applications. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  4. Bapat, R. B., Stanford, D., & van den Driessche, P. (1993). The eigenproblem in max algebra (DMS-631-IR). University of Victoria, British Columbia.

    Google Scholar 

  5. Berman, A., & Plemmons, R. J. (1979). Nonnegative matrices in the mathematical sciences. New York: Academic Press.

    MATH  Google Scholar 

  6. Brualdi, R. A., & Ryser, H. (1991). Combinatorial matrix theory. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  7. Butkovič, P. (2008). Permuted max-algebraic (tropical) eigenvector problem is NP-complete. Linear Algebra and Its Applications, 428, 1874–1882.

    Article  MathSciNet  MATH  Google Scholar 

  8. Butkovič, P., & Cuninghame-Green, R. A. (1992). An algorithm for the maximum cycle mean of an n×n bivalent matrix. Discrete Applied Mathematics, 35, 157–162.

    Article  MathSciNet  MATH  Google Scholar 

  9. Butkovič, P., & Plávka, J. (1989). On the dependence of the maximum cycle mean of a matrix on permutations of the rows and columns. Discrete Applied Mathematics, 23, 45–53.

    Article  MathSciNet  MATH  Google Scholar 

  10. Butkovič, P., Gaubert, S., & Cuninghame-Green, R. A. (2009). Reducible spectral theory with applications to the robustness of matrices in max-algebra. SIAM Journal on Matrix Analysis and Applications, 31(3), 1412–1431.

    Article  MathSciNet  Google Scholar 

  11. Chen, W., Qi, X., & Deng, S. (1990). The eigenproblem and period analysis of the discrete event systems. Systems Science and Mathematical Sciences, 3(3), 243–260.

    MathSciNet  MATH  Google Scholar 

  12. Cuninghame-Green, R. A. (1962). Describing industrial processes with interference and approximating their steady-state behaviour. Operations Research Quarterly, 13, 95–100.

    Article  Google Scholar 

  13. Cuninghame-Green, R. A. (1979). Lecture notes in economics and math systems : Vol. 166. Minimax algebra. Berlin: Springer. (Downloadable from http://web.mat.bham.ac.uk/P.Butkovic/).

    Book  MATH  Google Scholar 

  14. Cuninghame-Green, R. A. (1981). Minimax algebra. Bulletin—Institute of Mathematics and Its Applications, 17(4), 66–69.

    MathSciNet  MATH  Google Scholar 

  15. Cuninghame-Green, R. A. (1995). Minimax algebra and applications. In Advances in imaging and electron physics (Vol. 90, pp. 1–121). New York: Academic Press.

    Google Scholar 

  16. Cuninghame-Green, R. A., & Butkovič, P. (1995). Extremal eigenproblem for bivalent matrices. Linear Algebra and Its Applications, 222, 77–89.

    Article  MathSciNet  MATH  Google Scholar 

  17. Cuninghame-Green, R. A., & Butkovič, P. (2008). Generalised eigenproblem in max algebra. IEEE Xplore. Discrete Event Systems (pp. 236–241).

    Google Scholar 

  18. Elsner, L., & van den Driessche, P. (2008). Bounds for the Perron root using max eigenvalues. Linear Algebra and Its Applications, 428, 2000–2005.

    Article  MathSciNet  MATH  Google Scholar 

  19. Gaubert, S. (1992). Théorie des systèmes linéaires dans les dioïdes. Thèse, Ecole des Mines de Paris.

    Google Scholar 

  20. Gondran, M., & Minoux, M. (1977). Valeurs propres et vecteur propres dans les dioïdes et leur interprétation en théorie des graphes. Bulletin de la Direction des Etudes et Recherches Serie C Mathematiques et Informatiques (2), 25–41.

    Google Scholar 

  21. Heidergott, B., Olsder, G. J., & van der Woude, J. (2005). Max plus at work: modeling and analysis of synchronized systems. A course on max-plus algebra. Princeton: Princeton University Press.

    Google Scholar 

  22. Katz, R., Schneider, H., & Sergeev, S. (2010). Commuting matrices in max-algebra (Preprint 2010/03). University of Birmingham, School of Mathematics.

    Google Scholar 

  23. Rosen, K. H. et al. (2000). Handbook of discrete and combinatorial mathematics. New York: CRC Press.

    MATH  Google Scholar 

  24. Schneider, H. (1988). The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and on related properties: a survey. Linear Algebra and Its Applications, 84, 161–189.

    Article  Google Scholar 

  25. Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2), 146–160.

    Article  MathSciNet  MATH  Google Scholar 

  26. Vorobyov, N. N. (1967). Extremal algebra of positive matrices. Elektronische Informationsverarbeitung und Kybernetik, 3, 39–71 (in Russian).

    MathSciNet  Google Scholar 

  27. Vorobyov, N. N. (1970). Extremal algebra of nonnegative matrices. Elektronische Informationsverarbeitung und Kybernetik, 6, 303–311 (in Russian).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Butkovič, P. (2010). Eigenvalues and Eigenvectors. In: Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics. Springer, London. https://doi.org/10.1007/978-1-84996-299-5_4

Download citation

Publish with us

Policies and ethics