Skip to main content
  • 1048 Accesses

Abstract

In this chapter, we evaluate the performance of various classification models to identify the most favorable feature vectors for our extended and compact objects. We will show that there is no single “optimal” feature vector but a set of “most favorable” feature vectors associated with various classifiers for both the extend and compact object classes. Moreover, the most favorable feature vectors are those that contain contributions from all the feature types – meteorological, micro, and macro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duda RO, Hart PE et al (2001) Pattern Classification. 2nd edn. Wiley, New York

    MATH  Google Scholar 

  2. Jain AK, Duin RPW et al (2000) Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1):4–37

    Article  Google Scholar 

  3. Polikar R (2006) Pattern Recognition. In: Akay M (ed) Wiley Encyclopedia of Biomedical Engineering. Wiley-Interscience; John Wiley, Hoboken, N.J.; Chichester

    Google Scholar 

  4. Bishop CM (1995) Neural Networks for Pattern Recognition. Clarendon Press; Oxford University Press, Oxford; New York

    Google Scholar 

  5. Theodoridis S, Koutroumbas K (2006) Pattern Recognition. 3rd edn. Academic Press, San Diego, CA

    MATH  Google Scholar 

  6. van der Heijden F, Duin RPW et al (2004) Classification, Parameter Estimation, and State Estimation : An Engineering Approach using MATLAB. Wiley, Chichester, West Sussex, Eng. ; Hoboken, NJ

    Book  MATH  Google Scholar 

  7. Webb AR (2002) Statistical Pattern Recognition. 2nd edn. Wiley, West Sussex, England ; New Jersey

    MATH  Google Scholar 

  8. Patrick EA (1972) Fundamentals of Pattern Recognition. Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  9. Duda RO, Hart PE (1973) Pattern Classification and Scene Analysis. Wiley, New York

    MATH  Google Scholar 

  10. Hand DJ (1981) Discrimination and Classification. Wiley, Chichester Eng. ; New York

    MATH  Google Scholar 

  11. Devijver PA, Kittler J (1982) Pattern Recognition : A Statistical Approach. Prentice/Hall International, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  12. Fukunaga K (1990) Introduction to Statistical Pattern Recognition. 2nd edn. Academic Press, Boston

    MATH  Google Scholar 

  13. Devroye L, Györfi L et al (1996) A Probabilistic Theory of Pattern Recognition. Springer, New York

    MATH  Google Scholar 

  14. Dasarathy BV (1991) Nearest Neighbor (NN) Norms : Nn Pattern Classification Techniques. IEEE Computer Society Press; IEEE Computer Society Press Tutorial, Los Alamitos, Calif.; Washington

    Google Scholar 

  15. Duin RPW, Juszczak P et al (2004) PRTools4, A Matlab Toolbox for Pattern Recognition. Delft University of Technology, The Netherlands

    Google Scholar 

  16. Milligan GW, Cooper MC (1988) A Study of Standardization of Variables in Cluster Analysis. Journal of Classification 5:181–204

    Article  MathSciNet  Google Scholar 

  17. Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference : A Practical Information-Theoretic Approach. 2nd edn. Springer, New York

    MATH  Google Scholar 

  18. Holst GC (2000) Common Sense Approach to Thermal Imaging. JCD Pub.; co-published by SPIE Optical Engineering Press, Winter Park, Fla.; Bellingham, Wash.

    Google Scholar 

  19. Buluswar SD, Draper BA (1998) Color Machine Vision for Autonomous Vehicles. Engineering Applications of Artificial Intelligence(11):245–256

    Article  Google Scholar 

  20. Buluswar SD, Draper BA (2002) Color Models for Outdoor Machine Vision. Computer Vision and Image Understanding 85(2):71–99

    Article  MATH  Google Scholar 

  21. Manduchi R, Castano A et al (2005) Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation. Autonomous Robots 18(1):81–102

    Article  Google Scholar 

  22. Fisher RA (1922) On the Mathematical Foundations of Theoretical Statistics. Philosophical Transactions of the Royal Society of London.Series A, Containing Papers of a Mathematical Or Physical Character 222:309–368

    Article  Google Scholar 

  23. Fix, E., and Hodges, J. L. (1951). Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties, USAF School of Aviation Medicine, Randolph Field, Texas

    Google Scholar 

  24. Fix, E., and Hodges, J. L. (1952). Discriminatory Analysis: Nonparametric Discrimination: Small Sample Performance, USAF School of Aviation Medicine, Randolph Field, Texas

    Google Scholar 

  25. Cover TM, Hart PE (1967) Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory IT-13(1):21–27

    Article  Google Scholar 

  26. Parzen E (1962) On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics 33(3):1065–1076

    Article  MATH  MathSciNet  Google Scholar 

  27. Loftsgaarden DO, Quesenberry CP (1965) A Nonparametric Estimate of a Multivariate Density Function. The Annals of Mathematical Statistics 36(3):1049–1051

    Article  MATH  MathSciNet  Google Scholar 

  28. Fukunaga K, Hostetler L (1973) Optimization of k Nearest Neighbor Density Estimates. IEEE Transactions on Information Theory 19(3):320–326

    Article  MATH  MathSciNet  Google Scholar 

  29. Enas GG, Choi SC (1986) Choice of the Smoothing Parameter and Efficiency of k-Nearest Neighbor Classification. Computers & Mathematics with Applications, 12A(2):235–244

    Article  Google Scholar 

  30. Ghosh AK (2006) On Optimum Choice of k in Nearest Neighbor Classification. Computational Statistics & Data Analysis 50(11):3113–3123

    Article  MATH  MathSciNet  Google Scholar 

  31. Hyvarinen A, Karhunen J et al (2001) Independent Component Analysis. J. Wiley, New York

    Book  Google Scholar 

  32. Vicente MA, Hoyer PO et al (2007) Equivalence of some Common Linear Feature Extraction Techniques for Appearance-Based Object Recognition Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(5):896–900

    Article  Google Scholar 

  33. Maldague XPV (2001) Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley, New York

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Thermal Feature Selection. In: Mobile Robot Navigation with Intelligent Infrared Image Interpretation. Springer, London. https://doi.org/10.1007/978-1-84882-509-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-509-3_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-508-6

  • Online ISBN: 978-1-84882-509-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics