Skip to main content

Tissue Resources for Clinical Use and Marker Studies in Melanoma

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1102))

Abstract

The adequate procurement and preservation of high-quality tissue specimens from patients with melanoma is a critical clinical issue as patients’ tumor samples are now used not only for pathological diagnosis but are also necessary to determine the molecular signature of the tumor to stratify patients who may benefit from targeted melanoma therapy. Tissue resources available for physicians and investigators include formalin-fixed paraffin-embedded (FFPE) tissue and frozen tissue, either preserved in optimal cutting temperature (OCT) media or snap frozen. Properly preserved tissue may be used to evaluate melanoma biomarkers by immunohistochemistry (IHC) with tissue microarray (TMA) technology, to perform genetic and genomic analyses, and for other types of translational research in melanoma.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Davies MA, Gershenwald JE (2010) Targeted therapy for melanoma: a primer. Surg Oncol Clin N Am 20:165–180

    Article  Google Scholar 

  2. Wilson M, Zhao F, Letrero R et al (2012) Somatic mutation status of melanomas and effect on clinical outcome in patients on ECOG 2603. Society for Melanoma Research 2012 Congress, Hollywood, CA

    Google Scholar 

  3. Becker D, Mihm MC, Hewitt SM et al (2006) Markers and tissue resources for melanoma: meeting report. Cancer Res 66:10652–10657

    Article  PubMed  CAS  Google Scholar 

  4. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  PubMed  CAS  Google Scholar 

  5. Heidorn SJ, Milagre C, Whittaker S et al (2010) Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF. Cell 140:209–221

    Article  PubMed  CAS  Google Scholar 

  6. Poulikakos PI, Zhang C, Bollag G et al (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430

    Article  PubMed  CAS  Google Scholar 

  7. Halaban R, Zhang W, Bacchiocchi A et al (2010) PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res 23:190–200

    Article  PubMed  CAS  Google Scholar 

  8. Woodman SE, Lazar AJ, Aldape KD et al (2012) New strategies in melanoma: molecular testing in advanced disease. Clin Cancer Res 18:1195–1200

    Article  PubMed  Google Scholar 

  9. Ivan D, Niveiro M, Diwan AH et al (2006) Analysis of protein tyrosine kinases expression in the melanoma metastases of patients treated with Imatinib Mesylate (STI571, Gleevec). J Cutan Pathol 33:280–285

    Article  PubMed  Google Scholar 

  10. Bollag G, Hirth P, Tsai J et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599

    Article  PubMed  CAS  Google Scholar 

  11. Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  PubMed  CAS  Google Scholar 

  12. McArthur GA, Ribas A, Chapman PB et al (2011) Molecular analyses from a phase I trial of vemurafenib to study mechanism of action (MOA) and resistance in repeated biopsies from BRAF mutation-positive metastatic melanoma patients. J Clin Oncol. 29: abstract 8502

    Google Scholar 

  13. Sosman JA, Pavlick AC, Schuchter LM et al (2012) Analysis of molecular mechanisms of response and resistance to vemurafenib (vem) in BRAF V600E melanoma. J Clin Oncol 30:8503

    Google Scholar 

  14. Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF (V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  PubMed  CAS  Google Scholar 

  15. Villanueva J, Vultur A, Lee JT et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can Be overcome by cotargeting MEK and IGF-1R/ PI3K. Cancer Cell 18:683–695

    Article  PubMed  CAS  Google Scholar 

  16. Poulikakos PI, Persaud Y, Janakiraman M et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF (V600E). Nature 480:387–390

    Article  PubMed  CAS  Google Scholar 

  17. Montagut C, Sharma SV, Shioda T et al (2008) Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 68:4853–4861

    Article  PubMed  CAS  Google Scholar 

  18. Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703

    Article  PubMed  CAS  Google Scholar 

  19. Flaherty KT, Infante JR, Falchook GS et al (2011) Phase I/II expansion cohort of BRAF inhibitor GSK2118436 + MEK inhibitor GSK1120212 in patients with BRAF mutant metastatic melanoma who progressed on a prior BRAF inhibitor. Pigment Cell Mel Res 24:1022

    Google Scholar 

  20. Daud A, Sosman J, Weber J et al (2012) Mutation and copy number analysis in melanoma biopsies from a Phase I/II study evaluating the combination of dabrafenib and trametinib. Society for Melanoma Research 2012 Congress, Hollywood, CA

    Google Scholar 

  21. Singh B (2007) Initial pathology assessment prior to preoperative therapy. Preoperative therapy in invasive breast cancer: reviewing the state of the science and exploring new research directions. Bethesda, Maryland

    Google Scholar 

  22. Hewitt SM, Lewis FA, Cao Y et al (2008) Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med 132:1929–1935

    PubMed  Google Scholar 

  23. Leyland-Jones BR, Ambrosone CB, Bartlett J et al (2008) Recommendations for collection and handling of specimens from group breast cancer clinical trials. J Clin Oncol 26: 5638–5644

    Article  PubMed  Google Scholar 

  24. Ibberson D, Benes V, Muckenthaler MU et al (2009) RNA degradation compromises the reliability of microRNA expression profiling. BMC Biotechnol 9:102

    Article  PubMed  Google Scholar 

  25. Gundisch S, Hauck S, Sarioglu H et al (2012) Variability of protein and phosphoprotein levels in clinical tissue specimens during the preanalytical phase. J Proteome Res 11: 5748–5762

    PubMed  Google Scholar 

  26. Shen SS, Zhang PS, Eton O et al (2003) Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J Cutan Pathol 30:539–547

    Article  PubMed  Google Scholar 

  27. Camp RL, Neumeister V, Rimm DL (2008) A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol 26:5630–5637

    Article  PubMed  Google Scholar 

  28. Camp RL, Charette LA, Rimm DL (2000) Validation of tissue microarray technology in breast carcinoma. Lab Invest 80:1943–1949

    Article  PubMed  CAS  Google Scholar 

  29. Torhorst J, Bucher C, Kononen J et al (2001) Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 159:2249–2256

    Article  PubMed  CAS  Google Scholar 

  30. Hoos A, Urist MJ, Stojadinovic A et al (2001) Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158:1245–1251

    Article  PubMed  CAS  Google Scholar 

  31. Pacifico MD, Grover R, Richman P et al (2004) Validation of tissue microarray for the immunohistochemical profiling of melanoma. Melanoma Res 14:39–42

    Article  PubMed  Google Scholar 

  32. Lee I, Fox PS, Ferguson SD et al (2012) The expression of p-STAT3 in stage IV melanoma: risk of CNS metastasis and survival. Oncotarget 3:336–344

    PubMed  Google Scholar 

  33. Kim M, Gans JD, Nogueira C et al (2006) Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125: 1269–1281

    Article  PubMed  CAS  Google Scholar 

  34. Martinez DR, Richards HW, Lin Q et al (2012) H3K79me3T80ph is a novel histone dual modification and a mitotic indicator in melanoma. J Skin Cancer 2012:823534

    PubMed  Google Scholar 

  35. Prieto VG, Mourad-Zeidan AA, Melnikova V et al (2006) Galectin-3 expression is associated with tumor progression and pattern of sun exposure in melanoma. Clin Cancer Res 12: 6709–6715

    Article  PubMed  CAS  Google Scholar 

  36. Chakravarti N, Lotan R, Diwan AH et al (2007) Decreased expression of retinoid receptors in melanoma: entailment in tumorigenesis and prognosis. Clin Cancer Res 13: 4817–4824

    Article  PubMed  CAS  Google Scholar 

  37. Curry JL, Qin JZ, Bonish B et al (2003) Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 127:178–186

    PubMed  CAS  Google Scholar 

  38. Riss J, Khanna C, Koo S et al (2006) Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res 66: 7216–7224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant P50 CA093459 University of Texas MD Anderson Cancer Center SPORE in Melanoma and an NIH/SAIC Cancer Genome Atlas Project for melanoma contract, also awarded to MD Anderson.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Curry, J.L., Davies, M.A., Calderone, T.L., Nathanson, K., Prieto, V.G., Gershenwald, J.E. (2014). Tissue Resources for Clinical Use and Marker Studies in Melanoma. In: Thurin, M., Marincola, F. (eds) Molecular Diagnostics for Melanoma. Methods in Molecular Biology, vol 1102. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-727-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-727-3_37

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-726-6

  • Online ISBN: 978-1-62703-727-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics