Skip to main content

Detection of Soluble CR3 (CD11b/CD18) by Time-Resolved Immunofluorometry

  • Protocol
  • First Online:
The Complement System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1100))

Abstract

In the cell membrane complement receptor 3 (CR3) consists of one alpha chain (CD11b) and one beta chain (CD18). CR3 participates in many immunological processes, especially those involving cell migration, adhesion, and phagocytosis of complement-opsonized microbes. Recent findings of soluble CR3 in body fluids and in culture supernatant from experiments in vitro point to the involvement of ecto domain shedding as a part of the CR3 biology. To monitor such shedding on a quantitative basis, we have developed time-resolved immunofluorometric assays (TRIFMA) to detect soluble CD11b and CD18 in plasma or serum of either human or murine origin. Compared with most enzyme-linked immunosorbent assays methodologies, TRIFMA possesses prominent advantages, including better dynamic range and reproducibility. These assays may contribute to the understanding of the role of shedding of CR3 and other cell adhesion molecules in human disease and animal models involving inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnaout MA (1990) Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75(5):1037–1050

    PubMed  CAS  Google Scholar 

  2. Hibbs ML, Wardlaw AJ, Stacker SA, Anderson DC, Lee A, Roberts TM, Springer TA (1990) Transfection of cells from patients with leukocyte adhesion deficiency with an integrin beta subunit (CD18) restores lymphocyte function-associated antigen-1 expression and function. J Clin Invest 85(3):674–681

    Article  PubMed  CAS  Google Scholar 

  3. Wardlaw AJ, Hibbs ML, Stacker SA, Springer TA (1990) Distinct mutations in two patients with leukocyte adhesion deficiency and their functional correlates. J Exp Med 172(1):335–345

    Article  PubMed  CAS  Google Scholar 

  4. Kishimoto TK, Hollander N, Roberts TM, Anderson DC, Springer TA (1987) Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell 50(2):193–202

    Article  PubMed  CAS  Google Scholar 

  5. Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med 38:175–194

    Article  PubMed  CAS  Google Scholar 

  6. Dana N, Styrt B, Griffin JD, Todd RF 3rd, Klempner MS, Arnaout MA (1986) Two functional domains in the phagocyte membrane glycoprotein Mo1 identified with monoclonal antibodies. J Immunol 137(10):3259–3263

    PubMed  CAS  Google Scholar 

  7. Ross GD, Yount WJ, Walport MJ, Winfield JB, Parker CJ, Fuller CR, Taylor RP, Myones BL, Lachmann PJ (1985) Disease-associated loss of erythrocyte complement receptors (CR1, C3b receptors) in patients with systemic lupus erythematosus and other diseases involving autoantibodies and/or complement activation. J Immunol 135(3):2005–2014

    PubMed  CAS  Google Scholar 

  8. Park JY, Arnaout MA, Gupta V (2007) A simple, no-wash cell adhesion-based high-throughput assay for the discovery of small-molecule regulators of the integrin CD11b/CD18. J Biomol Screen 12(3):406–417

    Article  PubMed  CAS  Google Scholar 

  9. Lee JO, Rieu P, Arnaout MA, Liddington R (1995) Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80(4):631–638

    Article  PubMed  CAS  Google Scholar 

  10. Beller DI, Springer TA, Schreiber RD (1982) Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 156(4):1000–1009

    Article  PubMed  CAS  Google Scholar 

  11. Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA (1990) ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 111(6 Pt 2):3129–3139

    Article  PubMed  CAS  Google Scholar 

  12. Rosen H, Law SK (1990) The leukocyte cell surface receptor(s) for the iC3b product of complement. Curr Top Microbiol Immunol 153:99–122

    Article  PubMed  CAS  Google Scholar 

  13. Ross GD, Vetvicka V (1993) CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin Exp Immunol 92(2):181–184

    Article  PubMed  CAS  Google Scholar 

  14. Tsuji S, Kaji K, Nagasawa S (1994) Activation of the alternative pathway of human complement by apoptotic human umbilical vein endothelial cells. J Biochem 116(4):794–800

    PubMed  CAS  Google Scholar 

  15. Ezekowitz RA (2002) Local opsonization for apoptosis? Nat Immunol 3(6):510–512

    Article  PubMed  CAS  Google Scholar 

  16. Ross GD (2000) Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/alphaMbeta2-integrin glycoprotein. Crit Rev Immunol 20(3):197–222

    Article  PubMed  CAS  Google Scholar 

  17. Dunne JL, Collins RG, Beaud et al, Ballantyne CM, Ley K (2003) Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J Immunol 171(11):6105–6111

    PubMed  CAS  Google Scholar 

  18. Vorup-Jensen T (2012) On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev 64(15):1759–1781

    Article  PubMed  CAS  Google Scholar 

  19. Tan SM (2012) The leucocyte beta2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep 32(3): 241–269

    Article  PubMed  CAS  Google Scholar 

  20. Vorup-Jensen T, Carman CV, Shimaoka M, Schuck P, Svitel J, Springer TA (2005) Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin alphaXbeta2. Proc Natl Acad Sci U S A 102(5):1614–1619

    Article  PubMed  CAS  Google Scholar 

  21. Vorup-Jensen T, Chi L, Gjelstrup LC, Jensen UB, Jewett CA, Xie C, Shimaoka M, Linhardt RJ, Springer TA (2007) Binding between the integrin alphaXbeta2 (CD11c/CD18) and heparin. J Biol Chem 282(42):30869–30877

    Article  PubMed  CAS  Google Scholar 

  22. Gjelstrup LC, Boesen T, Kragstrup TW, Jorgensen A, Klein NJ, Thiel S, Deleuran BW, Vorup-Jensen T (2010) Shedding of large functionally active CD11/CD18 Integrin complexes from leukocyte membranes during synovial inflammation distinguishes three types of arthritis through differential epitope exposure. J Immunol 185(7):4154–4168

    Article  PubMed  CAS  Google Scholar 

  23. Zen K, Guo YL, Li LM, Bian Z, Zhang CY, Liu Y (2011) Cleavage of the CD11b extracellular domain by the leukocyte serprocidins is critical for neutrophil detachment during chemotaxis. Blood 117(18):4885–4894

    Article  PubMed  Google Scholar 

  24. Evans BJ, McDowall A, Taylor PC, Hogg N, Haskard DO, Landis RC (2006) Shedding of lymphocyte function-associated antigen-1 (LFA-1) in a human inflammatory response. Blood 107(9):3593–3599

    Article  PubMed  CAS  Google Scholar 

  25. Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrenholz F, Fogel M, Lemmon V, Altevogt P (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155(4):661–673

    Article  PubMed  CAS  Google Scholar 

  26. Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P (2006) Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med 203(12): 2569–2575

    Article  PubMed  CAS  Google Scholar 

  27. Phillipson M, Heit B, Parsons SA, Petri B, Mullaly SC, Colarusso P, Gower RM, Neely G, Simon SI, Kubes P (2009) Vav1 is essential for mechanotactic crawling and migration of neutrophils out of the inflamed microvasculature. J Immunol 182(11):6870–6878

    Article  PubMed  CAS  Google Scholar 

  28. Vaisar T, Kassim SY, Gomez IG, Green PS, Hargarten S, Gough PJ, Parks WC, Wilson CL, Raines EW, Heinecke JW (2009) MMP-9 sheds the beta2 integrin subunit (CD18) from macrophages. Mol Cell Proteomics 8(5):1044–1060

    Article  PubMed  CAS  Google Scholar 

  29. Gomez IG, Tang J, Wilson CL, Yan W, Heinecke JW, Harlan JM, Raines EW (2012) Metalloproteinase-mediated shedding of integrin beta2 promotes macrophage efflux from inflammatory sites. J Biol Chem 287(7):4581–4589

    Article  PubMed  CAS  Google Scholar 

  30. Springer TA (1990) Adhesion receptors of the immune system. Nature 346(6283):425–434

    Article  PubMed  CAS  Google Scholar 

  31. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2):301–314

    Article  PubMed  CAS  Google Scholar 

  32. Rosen H, Gordon S (1987) Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J Exp Med 166(6): 1685–1701

    Article  PubMed  CAS  Google Scholar 

  33. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Jens C. Jensenius and Steffen Thiel, Dept. of Biomedicine, Aarhus University, for their support and excellent advice on applications of TRIFMA. This work was financially supported by grants from the Lundbeck Foundation (LUNA), the Danish Multiple Sclerosis Association, and the Danish Council for Independent Research | Medical Sciences.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Nielsen, G.K., Vorup-Jensen, T. (2014). Detection of Soluble CR3 (CD11b/CD18) by Time-Resolved Immunofluorometry. In: Gadjeva, M. (eds) The Complement System. Methods in Molecular Biology, vol 1100. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-724-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-724-2_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-723-5

  • Online ISBN: 978-1-62703-724-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics