Skip to main content

Extraction and Quantification of Adenosine Triphosphate in Mammalian Tissues and Cells

  • Protocol
  • First Online:
Bioluminescent Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1098))

Abstract

Adenosine 5′-triphosphate (ATP) is the “energy currency” of organisms and plays central roles in bioenergetics, whereby its level is used to evaluate cell viability, proliferation, death, and energy transmission. In this chapter, we describe an improved and efficient method for extraction of ATP from tissues and cells using phenol-based reagents. The chaotropic extraction reagents reported so far co-precipitate ATP with insoluble proteins during extraction and with salts during neutralization. In comparison, the phenol-based reagents extract ATP well without the risks of co-precipitation. The extracted ATP can be quantified by the luciferase assay or high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilsson L, Kogure K, Busto R (1975) Effects of hypothermia and hyperthermia on brain energy metabolism. Acta Anaesthesiol Scand 19:199–205

    Article  CAS  PubMed  Google Scholar 

  2. Zhu H, Zennadi R, Xu BX et al (2011) Impaired adenosine-5′-triphosphate release from red blood cells promotes their adhesion to endothelial cells : a mechanism of hypoxemia after transfusion. Crit Care Med 39:2478–2486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Glembotski CC, Chapman AG, Atkinson DE et al (1981) Adenylate energy charge in Escherichia coli CR341T28 and properties of heat-sensitive adenylate kinase. J Bacteriol 145:1374–1385

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Calderwood SK, Bump EA, Stevenson MA et al (1985) Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cells stresses with starvation and heat. J Cell Physiol 124:261–268

    Article  CAS  PubMed  Google Scholar 

  5. Fedorow CA, Churchill TA, Kneteman NM (1998) Effects of hypothermic hypoxia on anaerobic energy metabolism in isolated anuran livers. J Comp Physiol B 168:555–561

    Article  CAS  PubMed  Google Scholar 

  6. Kohane MJ, Watt WB (1999) Flight-muscle adenylate pool responses to flight demands and thermal constraints in individual Colias eurytheme (Lepidoptera, pieridae). J Exp Biol 202:3145–3154

    CAS  PubMed  Google Scholar 

  7. Stanley PE, Williams SG (1969) Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem 29:381–392

    Article  CAS  PubMed  Google Scholar 

  8. Lundin A, Thore A (1975) Comparison of methods for extraction of bacterial adenine nucleotides determined by firefly assay. Appl Microbiol 30:713–721

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Thore A, Anséhn S, Lundin A et al (1975) Detection of bacteriuria by luciferase assay of adenosine triphosphate. J Clin Microbiol 1:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Napolitano MJ, Shain DJ (2005) Quantitation adenylate nucleotides in diverse organisms. J Biochem Biophys Methods 63:69–77

    Article  CAS  PubMed  Google Scholar 

  11. St.John JB (1970) Determination of ATP in Chlorella with the luciferin-luciferase enzyme system. Anal Biochem 37:409–416

    Article  CAS  PubMed  Google Scholar 

  12. Williams C, Forrester T (1976) Loss of ATP in micromolar amounts after perchloric acid treatment. Pflügers Arch 366:281–283

    Article  CAS  PubMed  Google Scholar 

  13. Wiener S, Wiener R, Urivetzky M et al (1974) Coprecipitation of ATP with potassium perchlorate : the effect of the firefly enzyme assay of ATP in tissue and blood. Anal Biochem 59:489–500

    Article  CAS  PubMed  Google Scholar 

  14. Chida J, Yamane K, Takei T et al (2012) An efficient extraction method for quantitation of adenosine triphosphate in mammalian tissues and cells. Anal Chim Acta 727:8–12

    Article  CAS  PubMed  Google Scholar 

  15. Sambrook J, Eritch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Exploratory Research (No. 21790992) from J.S.P.S.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chida, J., Kido, H. (2014). Extraction and Quantification of Adenosine Triphosphate in Mammalian Tissues and Cells. In: Badr, C. (eds) Bioluminescent Imaging. Methods in Molecular Biology, vol 1098. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-718-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-718-1_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-717-4

  • Online ISBN: 978-1-62703-718-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics