Skip to main content

A Protocol for Construction of Gene Targeting Vectors and Generation of Homologous Recombinant Embryonic Stem Cells

  • Protocol
  • First Online:
Virus-Host Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1064))

Abstract

The completion of human and mouse genome sequencing has confronted us with huge amount of data sequences that certainly need decades and many generations of scientists to be reasonably interpreted and assigned to physiological functions, and subsequently fruitfully translated into medical application. A means to assess the function of genes provides gene targeting in mouse embryonic stem cells (ESCs) that enables to introduce site-specific modifications in the mouse genome, and analyze their physiological consequences. Gene targeting enables almost any type of genetic modifications of interest, ranging from gene insertion (e.g., insertion of human-specific genes or reporter genes), gene disruption, point mutations, and short- and long-range deletions, inversions. Site-specific modification into the genome of ESCs can be reached by homologous recombination using targeting vectors. Here, we describe a protocol to generate targeting constructs and homologous recombinant ESCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohtsuka M, Ishii K, Kikuti YY, Warita T, Suzuki D, Sato M, Kimura M, Inoko H (2006) Construction of mouse 129/Ola BAC library for targeting experiments using E14 embryonic stem cells. Genes Genet Syst 81:143–146

    Article  CAS  PubMed  Google Scholar 

  2. Adams DJ, Quail MA, Cox T, van der Weyden L, Gorick BD, Su Q, Chan WI, Davies R, Bonfield JK, Law F et al (2005) A genome-wide, end-sequenced 129Sv BAC library resource for targeting vector construction. Genomics 86:753–758

    Article  CAS  PubMed  Google Scholar 

  3. Jansa P, Divina P, Forejt J (2005) Construction and characterization of a genomic BAC library for the Mus m. musculus mouse subspecies (PWD/Ph inbred strain). BMC Genomics 6:161

    Article  PubMed Central  PubMed  Google Scholar 

  4. Osoegawa K, Tateno M, Woon PY, Frengen E, Mammoser AG, Catanese JJ, Hayashizaki Y, de Jong PJ (2000) Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res 10:116–128

    CAS  PubMed  Google Scholar 

  5. Iiizumi S, Nomura Y, So S, Uegaki K, Aoki K, Shibahara K, Adachi N, Koyama H (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41:311–316

    Article  CAS  PubMed  Google Scholar 

  6. Walhout AJ, Temple GF, Brasch MA, Hartley JL, Lorson MA, van den Heuvel S, Vidal M (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328:575–592

    Article  CAS  PubMed  Google Scholar 

  7. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Landy A (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58:913–949

    Article  CAS  PubMed  Google Scholar 

  9. Moitoso de Vargas L, Kim S, Landy A (1989) DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase. Science 244:1457–1461

    Article  CAS  PubMed  Google Scholar 

  10. Nunes-Duby SE, Matsumoto L, Landy A (1989) Half-att site substrates reveal the homology independence and minimal protein requirements for productive synapsis in lambda excisive recombination. Cell 59:197–206

    Article  CAS  PubMed  Google Scholar 

  11. Maki S, Takiguchi S, Miki T, Horiuchi T (1992) Modulation of DNA supercoiling activity of Escherichia coli DNA gyrase by F plasmid proteins. Antagonistic actions of LetA (CcdA) and LetD (CcdB) proteins. J Biol Chem 267:12244–12251

    CAS  PubMed  Google Scholar 

  12. Bouabe H, Moser M, Heesemann J (2011) Enhanced selection for homologous-recombinant embryonic stem cell clones by Cre recombinase-mediated deletion of the positive selection marker. Transgenic Res. doi:10.1007/s11248-011-9522-x

    PubMed  Google Scholar 

  13. Bouabe H, Liu Y, Moser M, Bosl MR, Heesemann J (2011) Novel highly sensitive IL-10-{beta}-lactamase reporter mouse reveals cells of the innate immune system as a substantial source of IL-10 in vivo. J Immunol 187:3165–3176

    Article  CAS  PubMed  Google Scholar 

  14. Talts JF, Brakebusch C, Fassler R (1999) Integrin gene targeting. Methods Mol Biol 129:153–187

    CAS  PubMed  Google Scholar 

  15. Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J et al (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659

    Article  CAS  PubMed  Google Scholar 

  16. Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779

    Article  CAS  PubMed  Google Scholar 

  17. Malureanu LA (2011) Targeting vector construction through recombineering. Methods Mol Biol 693:181–203

    Article  CAS  PubMed  Google Scholar 

  18. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388

    Article  CAS  PubMed  Google Scholar 

  19. Hughes RA, Miklos AE, Ellington AD (2011) Gene synthesis: methods and applications. Methods Enzymol 498:277–309

    Article  CAS  PubMed  Google Scholar 

  20. Matzas M, Stahler PF, Kefer N, Siebelt N, Boisguerin V, Leonard JT, Keller A, Stahler CF, Haberle P, Gharizadeh B et al (2010) High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat Biotechnol 28:1291–1294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  CAS  PubMed  Google Scholar 

  22. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  PubMed  Google Scholar 

  23. Domogatskaya A, Rodin S, Boutaud A, Tryggvason K (2008) Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells 26:2800–2809

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is supported by grants from the BBSRC and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bouabe, H., Okkenhaug, K. (2013). A Protocol for Construction of Gene Targeting Vectors and Generation of Homologous Recombinant Embryonic Stem Cells. In: Bailer, S., Lieber, D. (eds) Virus-Host Interactions. Methods in Molecular Biology, vol 1064. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-601-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-601-6_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-600-9

  • Online ISBN: 978-1-62703-601-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics