Skip to main content

Measuring Transmembrane Helix Interaction Strengths in Lipid Bilayers Using Steric Trapping

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1063))

Abstract

We have developed a method to measure strong transmembrane (TM) helix interaction affinities in lipid bilayers that are difficult to measure by traditional dilution methods. The method, called steric trapping, couples dissociation of biotinylated TM helices to a competitive binding by monovalent streptavidin (mSA), so that dissociation is driven by the affinity of mSA for biotin and mSA concentration. By adjusting the binding affinity of mSA through mutation, the method can obtain dissociation constants of TM helix dimers (K d,dimer) over a range of six orders of magnitudes. The K d,dimer limit of measurable target interaction is extended 3–4 orders of magnitude lower than possible by dilution methods. Thus, steric trapping opens up new opportunities to study the folding and assembly of α-helical membrane proteins in lipid bilayer environments. Here we provide detailed methods for applying steric trapping to a TM helix dimer.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Moore DT, Berger BW, DeGrado WF (2008) Protein-protein interactions in the membrane: sequence, structural, and biological motifs. Structure 16:991–1001

    Article  PubMed  CAS  Google Scholar 

  2. MacKenzie KR, Fleming KG (2008) Association energetics of membrane spanning alpha-helices. Curr Opin Struct Biol 18: 412–419

    Article  PubMed  CAS  Google Scholar 

  3. Senes A (2011) Computational design of membrane proteins. Curr Opin Struct Biol 21:460–466

    Article  PubMed  CAS  Google Scholar 

  4. Fisher LE, Engelman DM, Sturgis JN (1999) Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. J Mol Biol 293:639–651

    Article  PubMed  CAS  Google Scholar 

  5. You M, Li E, Wimley WC, Hristova K (2005) Forster resonance energy transfer in liposomes: measurements of transmembrane helix dimerization in the native bilayer environment. Anal Biochem 340:154–164

    Article  PubMed  CAS  Google Scholar 

  6. Cristian L, Lear JD, DeGrado WF (2003) Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers. Proc Natl Acad Sci USA 100:14772–14777

    Article  PubMed  CAS  Google Scholar 

  7. Fleming KG, Ackerman AL, Engelman DM (1997) The effect of point mutations on the free energy of transmembrane alpha-helix dimerization. J Mol Biol 272:266–275

    Article  PubMed  CAS  Google Scholar 

  8. Hong H, Joh NH, Bowie JU, Tamm LK (2009) Methods for measuring the thermodynamic stability of membrane proteins. Methods Enzymol 455:213–236

    Article  PubMed  CAS  Google Scholar 

  9. Chen L, Novicky L, Merzlyakov M, Hristov T, Hristova K (2010) Measuring the energetics of membrane protein dimerization in mammalian membranes. J Am Chem Soc 132:3628–3635

    Article  PubMed  CAS  Google Scholar 

  10. Blois TM, Hong H, Kim TH, Bowie JU (2009) Protein unfolding with a steric trap. J Am Chem Soc 131:13914–13915

    Article  PubMed  CAS  Google Scholar 

  11. Hong H, Blois TM, Cao Z, Bowie JU (2010) Method to measure strong protein-protein interactions in lipid bilayers using a steric trap. Proc Natl Acad Sci USA 107:19802–19807

    Article  PubMed  CAS  Google Scholar 

  12. Howarth M, Chinnapen DJ, Gerrow K, Dorrestein PC, Grandy MR, Kelleher NL, El-Husseini A, Ting AY (2006) A monovalent streptavidin with a single femtomolar biotin binding site. Nat Methods 3:267–273

    Article  PubMed  CAS  Google Scholar 

  13. Laitinen OH, Hytonen VP, Nordlund HR, Kulomaa MS (2006) Genetically engineered avidins and streptavidins. Cell Mol Life Sci 63:2992–3017

    Article  PubMed  CAS  Google Scholar 

  14. Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann BJ, Dempsey CE, Engelman DM (1992) Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem 267: 7683–7689

    PubMed  CAS  Google Scholar 

  15. Fleming KG, Engelman DM (2001) Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants. Proc Natl Acad Sci USA 98: 14340–14344

    Article  PubMed  CAS  Google Scholar 

  16. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929

    Article  PubMed  CAS  Google Scholar 

  17. Orzaez M, Perez-Paya E, Mingarro I (2000) Influence of the C-terminus of the glycophorin A transmembrane fragment on the dimerization process. Protein Sci 9:1246–1253

    Article  PubMed  CAS  Google Scholar 

  18. Wu SC, Wong SL (2004) Development of an enzymatic method for site-specific incorporation of desthiobiotin to recombinant proteins in vitro. Anal Biochem 331:340–348

    Article  PubMed  CAS  Google Scholar 

  19. Chilkoti A, Tan PH, Stayton PS (1995) Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Proc Natl Acad Sci USA 92:1754–1758

    Article  PubMed  CAS  Google Scholar 

  20. Doura AK, Kobus FJ, Dubrovsky L, Hibbard E, Fleming KG (2004) Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer. J Mol Biol 341:991–998

    Article  PubMed  CAS  Google Scholar 

  21. Hyre DE, Le Trong I, Freitag S, Stenkamp RE, Stayton PS (2000) Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin-biotin system. Protein Sci 9:878–885

    Article  PubMed  CAS  Google Scholar 

  22. Ames BN, Dubin DT (1960) The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem 235: 769–775

    PubMed  CAS  Google Scholar 

  23. Fleming KG (2002) Standardizing the free energy change of transmembrane helix-helix interactions. J Mol Biol 323:563–571

    Article  PubMed  CAS  Google Scholar 

  24. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28: 319–365

    Article  PubMed  CAS  Google Scholar 

  25. Fisher LE, Engelman DM, Sturgis JN (2003) Effect of detergents on the association of the glycophorin a transmembrane helix. Biophys J 85:3097–3105

    Article  PubMed  CAS  Google Scholar 

  26. Hong H, Bowie JU (2011) Dramatic destabilization of transmembrane helix interactions by features of natural membrane environments. J Am Chem Soc 133:11389–11398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Karen Fleming lab (Johns Hopkins University) and the Alice Ting lab (MIT) for providing plasmids. This work was supported by National Institutes of Health (NIH) Grants R01GM063919 and R01GM081783 (to J.U.B.) and start-up funds from Michigan State University (to H.H.). H.H. was supported by the Leukemia and Lymphoma Society Career Development Program (Fellow).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Derivation of the Equation for the Second mSA Binding Coupled to the Dissociation of the TM Helix Dimer

Appendix: Derivation of the Equation for the Second mSA Binding Coupled to the Dissociation of the TM Helix Dimer

Equation 4 was derived as follows according to the reaction scheme,

$$ {P}_{2}\rightleftarrows 2P\rightleftarrows 2P\text{}·\text{}\text{mSA}$$
$$ {K}_{\text{d},\text{dimer}}=\frac{{\left[P\right]}^{2}}{\left[{P}_{2}\right]},\left[{P}_{2}\right]=\frac{{\left[P\right]}^{2}}{{K}_{\text{d},\text{dimer}}}$$
(7)
$$ {K}_{\text{d},\text{biotin}}=\frac{\left[P\right]\left[\text{mSA}\right]}{\left[P\cdot \text{mSA}\right]}, \left[P\cdot \text{mSA}\right]=\frac{\left[P\right]\left[\text{mSA}\right]}{{K}_{\text{d},\text{biotin}}}$$
(8)
$$ \begin{array}{l}{\theta}_{\text{bound}}=\frac{\left[P\cdot \text{mSA}\right]}{{\left[P\right]}_{o}}=\frac{\left[P\cdot \text{mSA}\right]}{2\left[{P}_{2}\right]+\left[P\right]+\left[P\cdot \text{mSA}\right]}=\frac{\frac{\left[P\right]\left[\text{mSA}\right]}{{K}_{\text{d},\text{biotin}}}}{2\frac{{\left[P\right]}^{2}}{{K}_{\text{d},\text{dimer}}}+\left[P\right]+\frac{\left[P\right]\left[\text{mSA}\right]}{{K}_{\text{d},\text{biotin}}}}\\ \text{}\text{}\left(7\right)\wedge \left(8\right)=\frac{1}{1+\frac{{K}_{\text{d},\text{biotin}}}{\left[\text{mSA}\right]}+2\frac{{K}_{\text{d},\text{biotin}}}{{K}_{\text{d},\text{dimer}}}\frac{\left[P\right]}{\left[\text{mSA}\right]}}\end{array}$$

By using Eq. 8

$$ \left[ P \right]=\frac{{{K_{\mathrm{d},\mathrm{biotin}}}\left[ {P\cdot \mathrm{mSA}} \right]}}{{\left[ {\mathrm{mSA}} \right]}}=\frac{{{K_{\mathrm{d},\mathrm{biotin}}}\left( {{{{\left[ P \right]}}_o}\cdot {\theta_{\mathrm{bound}}}} \right)}}{{\left[ {\mathrm{mSA}} \right]}} $$
$${\theta}_{\text{bound}}=\frac{1}{1+\frac{{K}_{\text{d},\text{biotin}}}{\left[\text{mSA}\right]}+2\frac{{K}_{\text{d},\text{biotin}}{}^{2}\left({\left[P\right]}_{o}\cdot {\theta}_{\text{bound}}\right)}{{K}_{\text{d},\text{dimer}}{\left[\text{mSA}\right]}^{2}}},$$

which gives

$$2\frac{{K}_{\text{d},\text{biotin}}{}^{2}}{{K}_{\text{d},\text{dimer}}}\frac{{\left[P\right]}_{o}}{{\left[\text{mSA}\right]}^{2}}{\theta}_{\text{bound}}{}^{2}+\left(1+\frac{{K}_{\text{d},\text{biotin}}}{\left[\text{mSA}\right]}\right){\theta}_{\text{bound}}-1=0$$

Then,

$${\theta}_{\text{bound}}=\frac{-\left(1+\frac{{K}_{\text{d},\text{biotin}}}{\left[\text{mSA}\right]}\right)+{\left({\left(1+\frac{{K}_{\text{d},\text{biotin}}}{\left[\text{mSA}\right]}\right)}^{2}+8{P}_{o}\frac{{K}_{\text{d},\text{biotin}}{}^{2}}{{K}_{\text{d},\text{dimer}}}\frac{1}{{\left[\text{mSA}\right]}^{2}}\right)}^{1/2}}{4{P}_{o}\frac{{K}_{\text{d},\text{biotin}}{}^{2}}{{K}_{\text{d},\text{dimer}}}\frac{1}{{\left[\text{mSA}\right]}^{2}}}$$

[P]: SN-BAP-GpATM monomer concentration; [P 2]: SN-BAP-GpATM dimer concentration; [P] o : Total SN-BAP-GpATM concentration; [mSA]: Total mSA concentration; K d,biotin: Dissociation constant for intrinsic biotin-binding affinity of mSA; K d,dimer: Dissociation constant for GpATM dimers.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hong, H., Chang, YC., Bowie, J.U. (2013). Measuring Transmembrane Helix Interaction Strengths in Lipid Bilayers Using Steric Trapping. In: Ghirlanda, G., Senes, A. (eds) Membrane Proteins. Methods in Molecular Biology, vol 1063. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-583-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-583-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-582-8

  • Online ISBN: 978-1-62703-583-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics