Skip to main content

Gel Electrophoresis-Based Proteomics of Senescent Tissues

  • Protocol
  • First Online:
Biological Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1048))

Abstract

Cellular aging is a fundamental biological process, and mass spectrometry-based proteomics has been widely used for the global identification of age-related changes in a variety of tissues. The proteomic profiling of senescent skeletal muscles has revealed a variety of alterations in proteins associated with the contractile apparatus, cell signaling, ion homeostasis, metabolism, and the cellular stress response. Here, we outline the two-dimensional gel electrophoretic separation and fluorescent labeling of the urea-soluble protein complement from aged diaphragm muscle. This chapter describes the various experimental steps involved in gel electrophoresis-based proteomics, including protein extraction, isoelectric focusing, slab gel electrophoresis, fluorescence labeling, image analysis, protein digestion, mass spectrometric identification of proteins and immunoblotting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soltow QA, Jones DP, Promislow DE (2010) A network perspective on metabolism and aging. Integr Comp Biol 50:844–854

    Article  PubMed  Google Scholar 

  2. Cevenini E, Bellavista E, Tieri P, Castellani G, Lescai F, Francesconi M, Mishto M, Santoro A, Valensin S, Salvioli S, Capri M, Zaikin A, Monti D, de Magalhães JP, Franceschi C (2010) Systems biology and longevity: an emerging approach to identify innovative anti-aging targets and strategies. Curr Pharm Des 16:802–813

    Article  PubMed  CAS  Google Scholar 

  3. Kirkwood TB (2011) Systems biology of ageing and longevity. Philos Trans R Soc Lond B Biol Sci 366:64–70

    Article  PubMed  Google Scholar 

  4. Sharov VS, Schöneich C (2007) Proteomic approach to aging research. Expert Rev Proteomics 4:309–321

    Article  PubMed  CAS  Google Scholar 

  5. Schiffer E, Mischak H, Zimmerli LU (2009) Proteomics in gerontology: current applications and future aspects—a mini-review. Gerontology 55:123–137

    Article  PubMed  CAS  Google Scholar 

  6. Siwy J, Vlahou A, Zimmerli LU, Zürbig P, Schiffer E (2011) Clinical proteomics: current techniques and potential applications in the elderly. Maturitas 68:233–244

    Article  PubMed  CAS  Google Scholar 

  7. Silvestri E, Lombardi A, de Lange P, Glinni D, Senese R, Cioffi F, Lanni A, Goglia F, Moreno M (2011) Studies of complex biological systems with applications to molecular medicine: the need to integrate transcriptomic and proteomic approaches. J Biomed Biotechnol 2011:810242

    Article  PubMed  Google Scholar 

  8. Faulkner JA, Larkin LM, Claflin DR, Brooks SV (2007) Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 34:1091–1096

    Article  PubMed  CAS  Google Scholar 

  9. Malafarina V, Uriz-Otano F, Iniesta R, Gil-Guerrero L (2012) Sarcopenia in the elderly: diagnosis, physiopathology and treatment. Maturitas 71:109–114

    Article  PubMed  Google Scholar 

  10. Berger MJ, Doherty TJ (2010) Sarcopenia: prevalence, mechanisms, and functional consequences. Interdiscip Top Gerontol 37:94–114

    Article  PubMed  Google Scholar 

  11. Ohlendieck K (2010) Proteomics of skeletal muscle differentiation, neuromuscular disorders and aging. Expert Rev Proteomics 7:283–296

    Article  PubMed  CAS  Google Scholar 

  12. Gelfi C, Vasso M, Cerretelli P (2011) Diversity of human skeletal muscle in health and disease: contribution of proteomics. J Proteomics 74:774–795

    Article  PubMed  CAS  Google Scholar 

  13. Ohlendieck K (2011) Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skelet Muscle 1:6

    Article  PubMed  Google Scholar 

  14. Doran P, Donoghue P, O’Connell K, Gannon J, Ohlendieck K (2009) Proteomics of skeletal muscle aging. Proteomics 9:989–1003

    Article  PubMed  CAS  Google Scholar 

  15. Ohlendieck K (2011) Proteomic profiling of fast-to-slow muscle transitions during aging. Front Physiol 2:105

    PubMed  Google Scholar 

  16. Staunton L, O’Connell K, Ohlendieck K (2011) Proteomic profiling of mitochondrial enzymes during skeletal muscle aging. J Aging Res 2011:908035

    PubMed  Google Scholar 

  17. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    Article  PubMed  CAS  Google Scholar 

  18. Gelfi C, Vigano A, Ripamonti M, Pontoglio A, Begum S, Pellegrino MA, Grassi B, Bottinelli R, Wait R, Cerretelli P (2006) The human muscle proteome in aging. J Proteome Res 5:1344–1353

    Article  PubMed  CAS  Google Scholar 

  19. Doran P, O’Connell K, Gannon J, Kavanagh M, Ohlendieck K (2008) Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis. Proteomics 8:364–377

    Article  PubMed  CAS  Google Scholar 

  20. O’Connell K, Ohlendieck K (2009) Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle. Proteomics 9:5509–5524

    Article  PubMed  Google Scholar 

  21. Caskey CI, Zerhouni EA, Fishman EK, Rahmouni AD (1989) Aging of the diaphragm: a CT study. Radiology 171:385–389

    PubMed  CAS  Google Scholar 

  22. Zhang YL, Kelsen SG (1990) Effects of aging on diaphragm contractile function in golden hamsters. Am Rev Respir Dis 142:1396–1401

    Article  PubMed  CAS  Google Scholar 

  23. Criswell DS, Shanely RA, Betters JJ, McKenzie MJ, Sellman JE, Van Gammeren DL, Powers SK (2003) Cumulative effects of aging and mechanical ventilation on in vitro diaphragm function. Chest 124:2302–2308

    Article  PubMed  Google Scholar 

  24. Suzuki T, Maruyama A, Sugiura T, Machida S, Miyata H (2009) Age-related changes in two- and three-dimensional morphology of type-identified endplates in the rat diaphragm. J Physiol Sci 59:57–62

    Article  PubMed  Google Scholar 

  25. Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics 74:1829–1841

    Article  PubMed  CAS  Google Scholar 

  26. Weiss W, Görg A (2009) High-resolution two-dimensional electrophoresis. Methods Mol Biol 564:13–32

    Article  PubMed  CAS  Google Scholar 

  27. Friedman DB, Hoving S, Westermeier R (2009) Isoelectric focusing and two-dimensional gel electrophoresis. Methods Enzymol 463:515–540

    Article  PubMed  CAS  Google Scholar 

  28. Carrette O, Burkhard PR, Sanchez JC, Hochstrasser DF (2006) State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research. Nat Protoc 1:812–823

    Article  PubMed  CAS  Google Scholar 

  29. Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73:2064–2077

    Article  PubMed  CAS  Google Scholar 

  30. Gauci VJ, Wright EP, Coorssen JR (2011) Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol 4:3–29

    Article  PubMed  Google Scholar 

  31. Minden JS, Dowd SR, Meyer HE, Stühler K (2009) Difference gel electrophoresis. Electrophoresis 30:S156–S161

    Article  PubMed  Google Scholar 

  32. Lewis C, Doran P, Ohlendieck K (2012) Proteomic analysis of dystrophic muscle. Methods Mol Biol 798:357–369

    Article  PubMed  CAS  Google Scholar 

  33. Rabilloud T, Strub JM, Luche S, van Dorsselaer SA, Lunardi J (2001) A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 1:699–704

    Article  PubMed  CAS  Google Scholar 

  34. Moebius J, Denker K, Sickmann A (2007) Ruthenium (II) tris-bathophenanthroline disulfonate is well suitable for Tris-Glycine PAGE but not for Bis-Tris gels. Proteomics 7:524–527

    Article  PubMed  CAS  Google Scholar 

  35. Aude-Garcia C, Collin-Faure V, Luche S, Rabilloud T (2011) Improvements and simplifications in in-gel fluorescent detection of proteins using ruthenium II tris-(bathophenanthroline disulfonate): the poor man’s fluorescent detection method. Proteomics 11:324–328

    Article  PubMed  CAS  Google Scholar 

  36. Gannon J, Staunton L, O’Connell K, Doran P, Ohlendieck K (2008) Phosphoproteomic analysis of aged skeletal muscle. Int J Mol Med 22:33–42

    PubMed  CAS  Google Scholar 

  37. Staunton L, Jockusch H, Wiegand C, Albrecht T, Ohlendieck K (2011) Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle. Mol Biosyst 7:2480–2489

    Article  PubMed  CAS  Google Scholar 

  38. Carberry S, Zweyer M, Swandulla D, Ohlendieck K (2012) Proteomics reveals drastic increase of extracellular matrix proteins collagen and dermatopontin in aged mdx diaphragm muscle. Int J Mol Med 30:229–234

    PubMed  CAS  Google Scholar 

  39. Carberry S, Zweyer M, Swandulla D, Ohlendieck K (2012) Proteomic profiling of age-related changes in the tibialis anterior muscle proteome of the mdx mouse model of dystrophinopathy. J Biomed Biotechnol 2012:691641

    Article  PubMed  Google Scholar 

  40. Fröhlich T, Arnold GJ (2009) A newcomer’s guide to nano-liquid-chromatography of peptides. Methods Mol Biol 564:123–141

    Article  PubMed  Google Scholar 

  41. Gaspari M, Cuda G (2011) Nano LC-MS/MS: a robust setup for proteomic analysis. Methods Mol Biol 790:115–126

    Article  PubMed  CAS  Google Scholar 

  42. Nikolov M, Schmidt C, Urlaub H (2012) Quantitative mass spectrometry-based proteomics: an overview. Methods Mol Biol 893:85–100

    Article  PubMed  CAS  Google Scholar 

  43. Zhou W, Petricoin EF 3rd, Longo C (2012) Mass spectrometry-based biomarker discovery. Methods Mol Biol 823:251–264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Carberry, S., Ohlendieck, K. (2013). Gel Electrophoresis-Based Proteomics of Senescent Tissues. In: Tollefsbol, T. (eds) Biological Aging. Methods in Molecular Biology, vol 1048. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-556-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-556-9_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-555-2

  • Online ISBN: 978-1-62703-556-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics