Skip to main content

High-Resolution Live-Cell Imaging and Time-Lapse Microscopy of Invadopodium Dynamics and Tracking Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1046))

Abstract

Invadopodia are specialized structures of cancer cells which aid in cancer cell invasion and metastasis. Therefore, studying the early steps of invadopodium assembly and its life cycle at the subcellular level by using high spatiotemporal resolution imaging provides an opportunity for understanding the signaling mechanisms involved in this very important process. In this chapter, we describe the design of a custom-built high-resolution fluorescence microscope which makes this challenging imaging possible. We also describe an ImageJ plugin that we have developed for tracking of invadopodia and lifetime analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Murphy DA, Courtneidge SA (2011) The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12:413–426

    Article  PubMed  CAS  Google Scholar 

  2. Bravo-Cordero JJ, Hodgson L, Condeelis J (2012) Directed cell invasion and migration during metastasis. Curr Opin Cell Biol 24:277–283

    Article  PubMed  CAS  Google Scholar 

  3. Eckert MA, Yang J (2011) Targeting invadopodia to block breast cancer metastasis. Oncotarget 2:562–568

    PubMed  Google Scholar 

  4. Stylli SS, Kaye AH, Lock P (2008) Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci 15:725–737

    Article  PubMed  CAS  Google Scholar 

  5. Chen WT, Chen JM, Parsons SJ, Parsons JT (1985) Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature 316:156–158

    Article  PubMed  CAS  Google Scholar 

  6. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC (2006) Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res 66:3034–3043

    Article  PubMed  CAS  Google Scholar 

  7. Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, Eddy R, Miki H, Takenawa T, Condeelis J (2005) Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168:441–452

    Article  PubMed  CAS  Google Scholar 

  8. Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, Fukami K (2009) Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res 69:8594–8602

    Article  PubMed  CAS  Google Scholar 

  9. Baldassarre M, Ayala I, Beznoussenko G, Giacchetti G, Machesky LM, Luini A, Buccione R (2006) Actin dynamics at sites of extracellular matrix degradation. Eur J Cell Biol 85:1217–1231

    Article  PubMed  CAS  Google Scholar 

  10. Monsky WL, Lin CY, Aoyama A, Kelly T, Akiyama SK, Mueller SC, Chen WT (1994) A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 54:5702–5710

    PubMed  CAS  Google Scholar 

  11. Ammer AG, Kelley LC, Hayes KE, Evans JV, Lopez-Skinner LA, Martin KH, Frederick B, Rothschild BL, Raben D, Elvin P, Green TP, Weed SA (2009) Saracatinib impairs head and neck squamous cell carcinoma invasion by disrupting invadopodia function. J Cancer Sci Ther 1:52–61

    Article  PubMed  CAS  Google Scholar 

  12. Chuang YY, Tran NL, Rusk N, Nakada M, Berens ME, Symons M (2004) Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res 64:8271–8275

    Article  PubMed  CAS  Google Scholar 

  13. Gianni D, Taulet N, DerMardirossian C, Bokoch GM (2010) c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional invadopodia in human colon cancer cells. Mol Biol Cell 21:4287–4298

    Article  PubMed  CAS  Google Scholar 

  14. Neel NF, Rossman KL, Martin TD, Hayes TK, Yeh JJ, Der CJ (2012) The RalB small GTPase mediates formation of invadopodia through a GTPase-activating protein-independent function of the RalBP1/RLIP76 effector. Mol Cell Biol 32:1374–1386

    Article  PubMed  CAS  Google Scholar 

  15. Desai B, Ma T, Chellaiah MA (2008) Invadopodia and matrix degradation, a new property of prostate cancer cells during migration and invasion. J Biol Chem 283:13856–13866

    Article  PubMed  CAS  Google Scholar 

  16. Bravo-Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J (2011) A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol 21:635–644

    Article  PubMed  CAS  Google Scholar 

  17. Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X, Desmarais V, van Rheenen J, Koleske AJ, Condeelis J (2009) Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol 186:571–587

    Article  PubMed  CAS  Google Scholar 

  18. Stylli SS, Stacey TT, Verhagen AM, Xu SS, Pass I, Courtneidge SA, Lock P (2009) Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. J Cell Sci 122:2727–2740

    Article  PubMed  CAS  Google Scholar 

  19. Segall JE, Tyerech S, Boselli L, Masseling S, Helft J, Chan A, Jones J, Condeelis J (1996) EGF stimulates lamellipod extension in metastatic mammary adenocarcinoma cells by an actin-dependent mechanism. Clin Exp Metastasis 14:61–72

    Article  PubMed  CAS  Google Scholar 

  20. Sharma VP, Beaty BT, Patsialou A, Liu H, Clarke M, Cox D, Condeelis JS, Eddy RJ (2012) Reconstitution of in vivo macrophage-tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. IntraVital 1:77–85

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Louis Hodgson, and members of the Analytical Imaging Facility and Gruss-Lipper Biophotonics Center for helping in the microscope design. We also thank people from Condeelis, Segall, and Cox laboratories for helpful discussions. This work was supported by a postdoctoral fellowship to Ved Sharma from Susan G. Komen for the Cure© (KG111405), the Integrated Imaging Program and CA150344.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sharma, V.P., Entenberg, D., Condeelis, J. (2013). High-Resolution Live-Cell Imaging and Time-Lapse Microscopy of Invadopodium Dynamics and Tracking Analysis. In: Coutts, A. (eds) Adhesion Protein Protocols. Methods in Molecular Biology, vol 1046. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-538-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-538-5_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-537-8

  • Online ISBN: 978-1-62703-538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics