Skip to main content

Expression Profiling to Identify Candidate Genes Associated with Allergic Phenotypes

  • Protocol
  • First Online:
Mouse Models of Allergic Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1032))

  • 3471 Accesses

Abstract

Transcript profiling reveals valuable insights to molecular and cellular activity related to disease. Gene expression profiles provide clues as to how tissues or cells in a particular environment may respond to stimuli. Gene-targeted examination of transcript changes is accomplished by employing a quantitative PCR approach using cDNA prepared from isolated RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexis NE, Brickey WJ, Lay JC, Wang Y, Roubey RA, Ting JP, Peden DB (2002) Development of an inhaled endotoxin challenge protocol for characterizing evoked cell surface phenotype and genomic responses of airway cells in allergic individuals. Ann N Y Acad Sci 975:148–159

    Article  Google Scholar 

  2. Bogaert P, Naessens T, De Koker S, Hennuy B, Hacha J, Smet M, Cataldo D, Di Valentin E, Piette J, Tournoy KG, Grooten J (2011) Inflammatory signatures for eosinophilic vs. neutrophilic allergic pulmonary inflammation reveal critical regulatory checkpoints. Am J Physiol Lung Cell Mol Physiol 300:L679–L690

    Article  PubMed  CAS  Google Scholar 

  3. Brickey WJ, Alexis NE, Hernandez ML, Reed W, Ting JP, Peden DB (2011) Sputum inflammatory cells from patients with allergic rhinitis and asthma have decreased inflammasome gene expression. J Allergy Clin Immunol 128:900–903

    Article  PubMed  CAS  Google Scholar 

  4. Daheshia M, Tian N, Connolly T, Drawid A, Wu Q, Bienvenu JG, Cavallo J, Jupp R, De Sanctis GT, Minnich A (2008) Molecular characterization of antigen-induced lung inflammation in a murine model of asthma. Ann Allergy Asthma Immunol 100:206–215

    Article  Google Scholar 

  5. Di Valentin E, Crahay C, Garbacki N, Hennuy B, Guéders M, Noël A, Foidart JM, Grooten J, Colige A, Piette J, Cataldo D (2009) New asthma biomarkers: lessons from murine models of acute and chronic asthma. Am J Physiol Lung Cell Mol Physiol 296:L185–L197

    Article  PubMed  Google Scholar 

  6. Follettie MT, Ellis DK, Donaldson DD, Hill AA, Diesl V, DeClercq C, Sypek JP, Dorner AJ, Wills-Karp M (2006) Gene expression analysis in a murine model of allergic asthma reveals overlapping disease and therapy dependent pathways in the lung. Pharmacogenomics J 6:141–152

    Article  PubMed  CAS  Google Scholar 

  7. Hernandez M, Brickey WJ, Alexis NE, Fry RC, Rager JE, Zhou B, Ting JP, Zhou H, Peden DB (2012) Airway cells from atopic asthmatic patients exposed to ozone display an enhanced innate immune gene profile. J Allergy Clin Immunol 129(259–261):e1–e2

    Google Scholar 

  8. Yu M, Eckart MR, Morgan AA, Mukai K, Butte AJ, Tsai M, Galli SJ (2011) Identification of an IFN-γ/mast cell axis in a mouse model of chronic asthma. J Clin Invest 121:3133–3143

    Article  PubMed  CAS  Google Scholar 

  9. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Nat Protoc 1:581–585

    Article  PubMed  CAS  Google Scholar 

  10. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  11. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    PubMed  CAS  Google Scholar 

  13. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  14. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Allergy and Infectious Disease grant U19-AI077437 and Radiation Countermeasures Center of Research Excellence (RadCCORE) subcontract U19-AI067798. The technical expertise of Michael Thompson and Karen McKinnon is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brickey, W.J. (2013). Expression Profiling to Identify Candidate Genes Associated with Allergic Phenotypes. In: Allen, I. (eds) Mouse Models of Allergic Disease. Methods in Molecular Biology, vol 1032. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-496-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-496-8_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-495-1

  • Online ISBN: 978-1-62703-496-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics