Skip to main content

Use of the Cockroach Antigen Model of Acute Asthma to Determine the Immunomodulatory Role of Early Exposure to Gastrointestinal Infection

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1032))

Abstract

The increased incidence of asthma over the last 50 years in developed countries has been associated with a decrease in infections acquired early in childhood. These early infections are thought to shape subsequent immune responses. Although there have been multiple clinical associations between gastrointestinal infections and decreased asthma incidence, it has been difficult to move beyond a simple correlation when studying human patients. This section describes an acute asthma model in C57BL/6 mice designed to specifically evaluate the effect of prior gastric Helicobacter colonization and inflammation in a murine model of cockroach allergen-induced asthma.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Strachan DP (2000) Family size, infection and atopy: the first decade of the “hygiene hypothesis”. Thorax 55(Suppl 1):S2–S10

    Article  PubMed  Google Scholar 

  2. Yoo J, Tcheurekdjian H, Lynch SV, Cabana M, Boushey HA (2007) Microbial manipulation of immune function for asthma prevention: inferences from clinical trials. Proc Am Thorac Soc 4(3):277–282

    Article  PubMed  CAS  Google Scholar 

  3. Strachan DP, Seagroatt V, Cook DG (1994) Chest illness in infancy and chronic respiratory disease in later life: an analysis by month of birth. Int J Epidemiol 23(5):1060–1068

    Article  PubMed  CAS  Google Scholar 

  4. Ownby DR, Johnson CC, Peterson EL (2002) Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA 288(8):963–972

    Article  PubMed  Google Scholar 

  5. Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A, Lauener RP, Schierl R, Renz H, Nowak D, von Mutius E (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347(12):869–877

    Article  PubMed  Google Scholar 

  6. Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S, Carr D, Schierl R, Nowak D, von Mutius E (2001) Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358(9288):1129–1133

    Article  PubMed  CAS  Google Scholar 

  7. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19(3):449–490

    Article  PubMed  CAS  Google Scholar 

  8. Harris PR, Wright SW, Serrano C, Riera F, Duarte I, Torres J, Pena A, Rollan A, Viviani P, Guiraldes E, Schmitz JM, Lorenz RG, Novak L, Smythies LE, Smith PD (2008) Helicobacter pylori gastritis in children is associated with a regulatory T-cell response. Gastroenterology 134(2):491–499

    Article  PubMed  Google Scholar 

  9. Dimmitt RA, Staley EM, Chuang G, Tanner SM, Soltau TD, Lorenz RG (2010) Role of postnatal acquisition of the intestinal microbiome in the early development of immune function. J Pediatr Gastroenterol Nutr 51(3):262–273

    PubMed  CAS  Google Scholar 

  10. Blaser MJ, Chen Y, Reibman J (2008) Does Helicobacter pylori protect against asthma and allergy? Gut 57(5):561–567

    Article  PubMed  Google Scholar 

  11. Amedei A, Cappon A, Codolo G, Cabrelle A, Polenghi A, Benagiano M, Tasca E, Azzurri A, D’Elios MM, Del Prete G, de Bernard M (2006) The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. J Clin Invest 116(4):1092–1101

    Article  PubMed  CAS  Google Scholar 

  12. Shi Y, Liu XF, Zhuang Y, Zhang JY, Liu T, Yin Z, Wu C, Mao XH, Jia KR, Wang FJ, Guo H, Flavell RA, Zhao Z, Liu KY, Xiao B, Guo Y, Zhang WJ, Zhou WY, Guo G, Zou QM (2010) Helicobacter pylori-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J Immunol 184(9):5121–5129

    Article  PubMed  CAS  Google Scholar 

  13. Kao JY, Zhang M, Miller MJ, Mills JC, Wang B, Liu M, Eaton KA, Zou W, Berndt BE, Cole TS, Takeuchi T, Owyang SY, Luther J (2010) Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology 138(3):1046–1054

    Article  PubMed  CAS  Google Scholar 

  14. Schmitz JM, Durham CG, Ho SB, Lorenz RG (2009) Gastric mucus alterations associated with murine Helicobacter infection. J Histochem Cytochem 57(5):457–467

    Article  PubMed  CAS  Google Scholar 

  15. Tahara T, Arisawa T, Wang F, Shibata T, Nakamura M, Sakata M, Hirata I, Nakano H (2008) Toll-like receptor 2 (TLR)—196 to 174del polymorphism in gastro-duodenal diseases in Japanese population. Dig Dis Sci 53(4):919–924

    Article  PubMed  CAS  Google Scholar 

  16. la Trejo-de OA, Torres J, Perez-Rodriguez M, Camorlinga-Ponce M, Luna LF, Abdo-Francis JM, Lazcano E, Maldonado-Bernal C (2008) TLR4 single-nucleotide polymorphisms alter mucosal cytokine and chemokine patterns in Mexican patients with Helicobacter pylori-­associated gastroduodenal diseases. Clin Immunol 129(2):333–340

    Article  Google Scholar 

  17. Chen Y, Blaser MJ (2008) Helicobacter pylori colonization is inversely associated with childhood asthma. J Infect Dis 198(4):553–560

    Article  PubMed  Google Scholar 

  18. Johnson CC, Ownby DR, Alford SH, Havstad SL, Williams LK, Zoratti EM, Peterson EL, Joseph CL (2005) Antibiotic exposure in early infancy and risk for childhood atopy. J Allergy Clin Immunol 115(6):1218–1224

    Article  PubMed  CAS  Google Scholar 

  19. Schaub B, Lauener R, von Mutius E (2006) The many faces of the hygiene hypothesis. J Allergy Clin Immunol 117(5):969–977, quiz 978

    Article  PubMed  Google Scholar 

  20. Gueders MM, Paulissen G, Crahay C, Quesada-Calvo F, Hacha J, Van Hove C, Tournoy K, Louis R, Foidart JM, Noel A, Cataldo DD (2009) Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflamm Res 58(12):845–854

    Article  PubMed  CAS  Google Scholar 

  21. Pastva A, Estell K, Schoeb TR, Atkinson TP, Schwiebert LM (2004) Aerobic exercise attenuates airway inflammatory responses in a mouse model of atopic asthma. J Immunol 172(7):4520–4526

    PubMed  CAS  Google Scholar 

  22. Hewitt M, Estell K, Davis IC, Schwiebert LM (2010) Repeated bouts of moderate-intensity aerobic exercise reduce airway reactivity in a murine asthma model. Am J Respir Cell Mol Biol 42(2):243–249

    Article  PubMed  CAS  Google Scholar 

  23. Epstein MM (2004) Do mouse models of allergic asthma mimic clinical disease? Int Arch Allergy Immunol 133(1):84–100

    Article  PubMed  Google Scholar 

  24. Nials AT, Uddin S (2008) Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech 1(4–5):213–220

    Article  PubMed  CAS  Google Scholar 

  25. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  PubMed  CAS  Google Scholar 

  26. Bas A, Forsberg G, Hammarstrom S, Hammarstrom ML (2004) Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol 59(6):566–573

    Article  PubMed  CAS  Google Scholar 

  27. Applied Biosystems. 4371095 Rev A

    Google Scholar 

  28. Roth K, Kapadia S, Martin S, Lorenz R (1999) Cellular immune responses are essential for the development of Helicobacter felis-associated gastric pathology. J Immunol 163(3):1490–1497

    PubMed  CAS  Google Scholar 

  29. Curtis JL, Warnock ML, Arraj SM, Kaltreider HB (1990) Histologic analysis of an immune response in the lung parenchyma of mice. Angiopathy accompanies inflammatory cell influx. Am J Pathol 137(3):689–699

    PubMed  CAS  Google Scholar 

  30. Brown JK, Pemberton AD, Wright SH, Miller HR (2004) Primary antibody-Fab fragment complexes: a flexible alternative to traditional direct and indirect immunolabeling techniques. J Histochem Cytochem 52(9):1219–1230

    Article  PubMed  CAS  Google Scholar 

  31. Ropenga A, Chapel A, Vandamme M, Griffiths NM (2004) Use of reference gene expression in rat distal colon after radiation exposure: a caveat. Radiat Res 161(5):597–602

    Article  PubMed  CAS  Google Scholar 

  32. Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, Brittner B, Ludwig B, Schilling M (2005) Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes 19(2):101–109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kim Estell for assistance with airway hyperresponsiveness analysis and Ben Christmann for helping with the lung inflammation technique. We would also like to thank J. McNaught for slide preparation and M. Harris for animal husbandry, and members of the Lorenz lab for valuable advice. This study was supported in part by NIH grants R01 DK059911; P01 DK071176; the American Asthma Foundation grant 06-0167; and University of Alabama at Birmingham Digestive Diseases Research Development Center grant P30 DK064400. CGD is supported by the Howard Hughes Medical Institute Med into Grad Fellowship. Aspects of this project were conducted in biomedical research space that was constructed with funds supported in part by NIH grant C06RR020136.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Durham, C.G., Schwiebert, L.M., Lorenz, R.G. (2013). Use of the Cockroach Antigen Model of Acute Asthma to Determine the Immunomodulatory Role of Early Exposure to Gastrointestinal Infection. In: Allen, I. (eds) Mouse Models of Allergic Disease. Methods in Molecular Biology, vol 1032. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-496-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-496-8_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-495-1

  • Online ISBN: 978-1-62703-496-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics