Skip to main content

Live-Cell Migration and Adhesion Turnover Assays

  • Protocol
  • First Online:
Cell Imaging Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 931))

Abstract

Fluorescence microscopy has revolutionized the way live-cell imaging is achieved. At the same time, it is also potentially harmful to a living specimen. Therefore, the specimen must be monitored for viability and health before, during, and after imaging sessions. Methods for monitoring cell viability and health will be discussed in this chapter. Another key to successful live-cell imaging is to minimize light exposure as much as possible. A summary of strategies for minimizing light exposure including maximizing the light throughput of the microscope and the sensitivity of light detection is presented. Various fluorescence microscopy techniques are presented with a focus on how the light is delivered to the sample (i.e., light density) and pros and cons for use with living specimens. The reader is also directed to other publications that go into these topics in more detail. Methods are described on how to prepare samples for single cell migration assays, how to measure cell migration rates (e.g., bright-field, semi-automated, and automated), and how to measure focal adhesion turnover rates. Details of how to correct images for background intensity and field-illumination uniformity artifacts for quantitative imaging are also described. Overall, this chapter will be helpful to scientists who are interested in imaging live specimens using fluorescence microscopy techniques. It will be of particular interest to anyone wanting to perform quantitative fluorescence imaging, and wanting to measure cell migration rates, and focal adhesion dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clay RS, Court TH (1975) The history of the microscope. Holland Press, London

    Google Scholar 

  2. Clark G, Kasten FH (1983) History of staining, 3rd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  3. Ellinger P, Hiert A (1929) Mikroskopische Beobachtungen an lebenden Organen mit Demonstrationen (Intravitalmikroskopie). Arch Exp Pathol Phar 147:63

    Article  Google Scholar 

  4. Ploem JS (1967) The use of a vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incident light. Z Wiss Mikrosk 68:129–142

    PubMed  CAS  Google Scholar 

  5. Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91:1–13

    Article  PubMed  CAS  Google Scholar 

  6. Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotech Histochem 70:220–233

    Article  PubMed  CAS  Google Scholar 

  7. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  8. Yefenof E, Klein G, Jondal M, Oldstone MB (1976) Surface markers on human B and T-lymphocytes. IX. Two-color immuno­fluorescence studies on the association between ebv receptors and complement receptors on the surface of lymphoid cell lines. Int J Cancer 17:693–700

    Article  PubMed  CAS  Google Scholar 

  9. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  10. Frigault MM, Lacoste J, Swift JL, Brown CM (2009) Live-cell microscopy—tips and tools. J Cell Sci 122:753–767

    Article  PubMed  CAS  Google Scholar 

  11. Lacoste J, Vining C, Zuo D, Spurmanis A, Brown CM (2011) Optimal conditions for live cell microscopy and raster image correlation spectroscopy (RICS). In: Geddes CD (ed) Annual Reviews in Fluorescence 2010, Springer, New York

    Google Scholar 

  12. Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2:910–919

    Article  PubMed  CAS  Google Scholar 

  13. Webb DJ, Brown CM (2012) Epi-fluorescence microscopy. In: Taatjes DJ, Roth J (eds) Methods in molecular biology. Springer, New York

    Google Scholar 

  14. Day RN, Schaufele F (2008) Fluorescent ­protein tools for studying protein dynamics in living cells: a review. J Biomed Opt 13:031202

    Article  PubMed  Google Scholar 

  15. Galdeen SA, North AJ (2011) Live cell fluorescence microscopy techniques. Methods Mol Biol 769:205–222

    Article  PubMed  CAS  Google Scholar 

  16. Tsien RY (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett 579:927–932

    Article  PubMed  CAS  Google Scholar 

  17. Nishigaki T, Wood CD, Shiba K, Baba SA, Darszon A (2006) Stroboscopic illumination using light-emitting diodes reduces phototoxicity in fluorescence cell imaging. Biotechniques 41:191–197

    Article  PubMed  CAS  Google Scholar 

  18. Donnert G, Eggeling C, Hell SW (2007) Major signal increase in fluorescence microscopy through dark-state relaxation. Nat Methods 4:81–86

    Article  PubMed  CAS  Google Scholar 

  19. De AK, Goswami D (2009) A systematic study on fluorescence enhancement under single-photon pulsed illumination. J Fluoresc 19:931–937

    Article  PubMed  Google Scholar 

  20. Borlinghaus RT (2006) MRT letter: high speed scanning has the potential to increase fluorescence yield and to reduce photobleaching. Microsc Res Tech 69:689–692

    Article  PubMed  CAS  Google Scholar 

  21. Michalet X, Cheng A, Antelman J, Suyama M, Arisaka K, Weiss S (2008) Hybrid photodetector for single-molecule spectroscopy and microscopy. Proc Soc Photo Opt Instrum Eng 6862:68620F

    PubMed  Google Scholar 

  22. Ockleford C (1995) The confocal laser scanning microscope (CLSM). J Pathol 176:1–2

    Article  PubMed  CAS  Google Scholar 

  23. Wilson T (2010) Spinning-disk microscopy systems. Cold Spring Harb Protoc 2010:pdb top88

    Google Scholar 

  24. Maddox PS (2008) Confocal imaging of cell division. Curr Protoc Cytom Chapter 12:Unit12 11

    Google Scholar 

  25. Wolleschensky R, Zimmermann B, Kempe M (2006) High-speed confocal fluorescence imaging with a novel line scanning microscope. J Biomed Opt 11:064011

    Article  PubMed  Google Scholar 

  26. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89:141–145

    Article  PubMed  CAS  Google Scholar 

  27. Axelrod D (2008) Chapter 7: total internal reflection fluorescence microscopy. Methods Cell Biol 89:169–221

    Article  PubMed  CAS  Google Scholar 

  28. Hanley QS, Verveer PJ, Gemkow MJ, Arndt-Jovin D, Jovin TM (1999) An optical sectioning programmable array microscope implemented with a digital micromirror device. J Microsc 196:317–331

    Article  PubMed  CAS  Google Scholar 

  29. Hoebe RA, Van der Voort HT, Stap J, Van Noorden CJ, Manders EM (2008) Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy. J Microsc 231:9–20

    Article  PubMed  CAS  Google Scholar 

  30. Hoebe RA, Van Oven CH, Gadella TW Jr, Dhonukshe PB, Van Noorden CJ, Manders EM (2007) Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotechnol 25:249–253

    Article  PubMed  CAS  Google Scholar 

  31. Caarls W, Rieger B, De Vries AH, Arndt-Jovin DJ, Jovin TM (2011) Minimizing light exposure with the programmable array microscope. J Microsc 241:101–110

    Article  PubMed  CAS  Google Scholar 

  32. Spector DL, Goldman RD (2010) Constructing and expressing fluorescent protein fusions. Cold Spring Harb Protoc 2010:pdb top87

    Google Scholar 

  33. Spector DL, Goldman RD (2010) Transfection of mammalian cells with fluorescent protein fusions. Cold Spring Harb Protoc 2010:pdb prot5517

    Google Scholar 

  34. Freshney IR (2005) Culture of animal cells: a manual of basic technique, 5th edn. Wiley-Liss, New York

    Book  Google Scholar 

  35. Stack RF, Bayles CJ, Girard AM, Martin K, Opansky C, Schulz K, Cole RW (2011) Quality assurance testing for modern optical imaging systems. Microsc Microanal 17:598–606

    Article  PubMed  CAS  Google Scholar 

  36. Nyquist H (1928) Certain topics in telegraph transmission theory. Reprint as classic paper in: Proc IEEE 90(2):617–644, Feb 2002 46

    Google Scholar 

  37. Brown CM (2007) Fluorescence microscopy—avoiding the pitfalls. J Cell Sci 120:1703–1705

    Article  PubMed  CAS  Google Scholar 

  38. Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat Cell Biol 4:E97–E100

    Article  PubMed  CAS  Google Scholar 

  39. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6:154–161

    Article  PubMed  CAS  Google Scholar 

  40. Graf R, Rietdorf J, Zimmermann T (2005) Live cell spinning disk microscopy. Adv Biochem Eng Biotechnol 95:57–75

    PubMed  Google Scholar 

  41. Nayal A, Webb DJ, Brown CM, Schaefer EM, Vicente-Manzanares M, Horwitz AR (2006) Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J Cell Biol 173:587–589

    Article  PubMed  CAS  Google Scholar 

  42. Zwier JM, Van Rooij GJ, Hofstraat JW, Brakenhoff GJ (2004) Image calibration in fluorescence microscopy. J Microsc 216:15–24

    Article  PubMed  CAS  Google Scholar 

  43. Wolf DE, Samarasekera C, Swedlow JR (2007) Quantitative analysis of digital microscope images. In: Methods in cell biology. Elsevier Inc, Vol 81, pp 365–396

    Google Scholar 

  44. Model MA, Blank JL (2008) Concentrated dyes as a source of two-dimensional fluorescent field for characterization of a confocal microscope. J Microsc 229:12–16

    Article  PubMed  CAS  Google Scholar 

  45. Carlton PM, Boulanger J, Kervrann C, Sibarita JB, Salamero J, Gordon-Messer S, Bressan D, Haber JE, Haase S, Shao L, Winoto L, Matsuda A, Kner P, Uzawa S, Gustafsson M, Kam Z, Agard DA, Sedat JW (2010) Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc Natl Acad Sci U S A 107:16016–16022

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Images for this chapter were collected at the McGill University Life Sciences Complex Imaging Facility funded by the Canadian Foundation for Innovation (CFI) and the Ministère du Développement économique, Innovation et Exportation—Québec (MDEIE) and the Cell Imaging and Analysis Network (CIAN), also funded by the CFI. Thank you to users and colleagues of CIAN, the McGill Imaging facility, MIA Cellavie, the Association of Biomolecular Resource Facilities, The Canadian Cytometry and Microscopy Association (CCMA) and corporate application scientists with whom we constantly interact. Thank you to everyone who read the chapter and gave us valuable constructive feedback. To Ji-Sook Lee for critical reading of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire M. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lacoste, J., Young, K., Brown, C.M. (2012). Live-Cell Migration and Adhesion Turnover Assays. In: Taatjes, D., Roth, J. (eds) Cell Imaging Techniques. Methods in Molecular Biology, vol 931. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-056-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-056-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-055-7

  • Online ISBN: 978-1-62703-056-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics