Skip to main content

Biophysical Methods for Assessing Plant Responses to Nanoparticle Exposure

  • Protocol
  • First Online:
Book cover Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 926))

  • 4040 Accesses

Abstract

As nanotechnology rapidly emerges into a new industry—driven by its enormous potential to revolutionize electronics, materials, and medicine—exposure of living species to discharged nanoparticles has become inevitable. Despite the increased effort on elucidating the environmental impact of nanotechnology, literature on higher plants exposure to nanoparticles remains scarce and often contradictory. Here we present our biophysical methodologies for the study of carbon nanoparticle uptake by Allium cepa cells and rice plants. We address the three essential aspects for such studies: identification of carbon nanoparticles in the plant species, quantification of nanotransport and aggregation in the plant compartments, and evaluation of plant responses to nanoparticle exposure on the cellular and organism level. Considering the close connection between plant and mammalian species in ecological systems especially in the food chain, we draw a direct comparison on the uptake of carbon nanoparticles in plant and mammalian cells. In addition to the above studies, we present methods for assessing the effects of quantum dot adsorption on algal photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile large-mouth bass. Environ Health Perspect 112:1058–1062

    Article  PubMed  CAS  Google Scholar 

  2. Roberts AP, Mount AS, Seda B, Qiao R, Lin S, Ke PC, Rao AM, Klaine SJ (2007) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41:3025–3029

    Article  PubMed  CAS  Google Scholar 

  3. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  4. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    Article  PubMed  CAS  Google Scholar 

  5. Govorov AO, Carmeli I (2007) Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett 7:620–625

    Article  PubMed  CAS  Google Scholar 

  6. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  PubMed  CAS  Google Scholar 

  7. Yang L, Watts D (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  PubMed  CAS  Google Scholar 

  8. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  PubMed  CAS  Google Scholar 

  9. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  PubMed  CAS  Google Scholar 

  10. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova T, Rao AM, Luo H, Ke PC (2009) Uptake, translocation and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Article  PubMed  CAS  Google Scholar 

  11. Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–617

    Article  PubMed  CAS  Google Scholar 

  12. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  13. Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    Article  PubMed  CAS  Google Scholar 

  14. Eklund PC, Rao AM, Zhou P, Wang Y, Holden JM (1995) Photochemical transformation of C60 and C70 films. Thin Film Solids 257:185–203

    Article  CAS  Google Scholar 

  15. Shang J, Ratnikova TA, Anttalainen S, Salonen E, Ke PC, Knap HT (2009) Experimental and simulation studies of real-time polymerase chain reaction in the presence of a fullerene derivative. Nanotechnology 20:415101

    Article  PubMed  Google Scholar 

  16. Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557

    Article  PubMed  CAS  Google Scholar 

  17. Weber WJ Jr (1985) Adsorption technology: a step-by-step approach to process evaluation and application. Dekker, New York

    Google Scholar 

  18. Ribeiro MHL, Lourenco PAS, Monteiro JP, Ferreira-Dias S (2001) Kinetics of selective adsorption of impurities from a crude vegetable oil in hexane to activated earths and carbons. Eur Food Res Technol 213:132–138

    Article  CAS  Google Scholar 

  19. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin V (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  20. Šamaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  21. Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romeo JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Ke acknowledges the support of NSF CAREER grant #CBET-0744040 and US EPA grant #R834092. Bhattacharya acknowledges a COMSET graduate fellowship. The authors thank Sijie Lin, Matthew Stone, JoAn Hudson, Junjun Shang, and Halina Knap for their valuable contributions cited in this presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Chun Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ratnikova, T.A., Chen, R., Bhattacharya, P., Ke, P.C. (2012). Biophysical Methods for Assessing Plant Responses to Nanoparticle Exposure. In: Reineke, J. (eds) Nanotoxicity. Methods in Molecular Biology, vol 926. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-002-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-002-1_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-001-4

  • Online ISBN: 978-1-62703-002-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics