Skip to main content

Chromatin Immunoprecipitation Analysis of Xenopus Embryos

  • Protocol
  • First Online:
Xenopus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

Chromatin immunoprecipitation (ChIP) is a powerful technique to study epigenetic regulation and transcription factor binding events in the nucleus. It is based on immune-affinity capture of epitopes that have been cross-linked to genomic DNA in vivo. A readout of the extent to which the epitope is associated with particular genomic regions can be obtained by quantitative PCR (ChIP-qPCR), microarray hybridization (ChIP-chip), or deep sequencing (ChIP-seq). ChIP can be used for molecular and quantitative analyses of histone modifications, transcription factors, and elongating RNA polymerase II at specific loci. It can also be applied to assess the cellular state of transcriptional activation or repression as a predictor of the cells’ capabilities and potential. Another possibility is to employ ChIP to characterize genomes, as histone modifications and binding events occur at specific and highly characteristic genomic elements and locations. This chapter provides a step-by-step protocol of ChIP using early Xenopus embryos and discusses potential pitfalls and other issues relevant for successful probing of protein–genome interactions by ChIP-qPCR and ChIP-seq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937

    Article  PubMed  CAS  Google Scholar 

  2. Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395

    PubMed  CAS  Google Scholar 

  3. Mendenhall EM, Bernstein BE (2008) Chromatin state maps: new technologies, new insights. Curr Opin Genet Dev 18:109

    Article  PubMed  CAS  Google Scholar 

  4. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10:605

    Article  PubMed  CAS  Google Scholar 

  5. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99

    Article  PubMed  CAS  Google Scholar 

  6. Sachs LM, Shi YB (2000) Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc Natl Acad Sci U S A 97:13138

    Article  PubMed  CAS  Google Scholar 

  7. Jallow Z, Jacobi UG, Weeks DL, Dawid IB, Veenstra GJC (2004) Specialized and redundant roles of TBP and a vertebrate-specific TBP paralog in embryonic gene regulation in Xenopus. Proc Natl Acad Sci U S A 101:13525

    Article  PubMed  CAS  Google Scholar 

  8. Blythe SA, Reid CD, Kessler DS, Klein PS (2009) Chromatin immunoprecipitation in early Xenopus laevis embryos. Dev Dyn 238:1422

    Article  PubMed  CAS  Google Scholar 

  9. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633

    Article  PubMed  CAS  Google Scholar 

  10. Akkers RC, vanHeeringen SJ, Manak JR, Green RD, Stunnenberg HG, Veenstra GJC (2010) ChIP-chip designs to interrogate the genome of Xenopus embryos for transcription factor binding and epigenetic regulation. PLoS One 5:e8820

    Article  PubMed  Google Scholar 

  11. Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs K-J, Stunnenberg HG, Veenstra GJC (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17:425

    Article  PubMed  CAS  Google Scholar 

  12. van Heeringen SJ, Akhtar W, Jacobi UG, Akkers RC, Suzuki Y, Veenstra GJC (2011)Nucleotide composition-linked divergence of vertebrate core promoter architecture. Genome Res 21:410–421. doi:10.1101/gr.111724.110

    Google Scholar 

  13. Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476

    PubMed  CAS  Google Scholar 

  14. Barski A, Zhao K (2009) Genomic location analysis by ChIP-Seq. J Cell Biochem 107:11

    Article  PubMed  CAS  Google Scholar 

  15. O’Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38:835

    Article  PubMed  Google Scholar 

  16. Dahl JA, Collas P (2008) A rapid micro chromatin immunoprecipitation assay (microChIP). Nat Protoc 3:1032

    Article  PubMed  CAS  Google Scholar 

  17. Adli M, Zhu J, Bernstein BE (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 7:615

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Jan C. Veenstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Akkers, R.C., Jacobi, U.G., Veenstra, G.J.C. (2012). Chromatin Immunoprecipitation Analysis of Xenopus Embryos. In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics