Skip to main content

Hybridoma Technology for the Generation of Monoclonal Antibodies

  • Protocol
  • First Online:
Book cover Antibody Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 901))

Abstract

Hybridoma technology has long been a remarkable and indispensable platform for generating high-quality monoclonal antibodies (mAbs). Hybridoma-derived mAbs have not only served as powerful tool reagents but also have emerged as the most rapidly expanding class of therapeutic biologics. With the establishment of mAb humanization and with the development of transgenic-humanized mice, hybridoma technology has opened new avenues for effectively generating humanized or fully human mAbs as therapeutics. In this chapter, an overview of hybridoma technology and the laboratory procedures used routinely for hybridoma generation are discussed and detailed in the following sections: cell fusion for hybridoma generation, antibody screening and characterization, hybridoma subcloning and mAb isotyping, as well as production of mAbs from hybridoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  2. Little M, Kipriyanov SM, Gall FL, Moldenhauer G (2000) Of mice and men: hybridoma and recombinant antibodies. Immunol Today 21: 364–370

    Article  PubMed  CAS  Google Scholar 

  3. An Z (2010) Monoclonal antibodies—a proven and rapidly expanding therapeutic modality for human diseases. Protein Cell 1:319–330

    Article  PubMed  CAS  Google Scholar 

  4. Weiner LM (2007) Building better magic bullets—improving unconjugated monoclonal antibody therapy for cancer. Nat Rev Cancer 7: 701–706

    Article  PubMed  CAS  Google Scholar 

  5. Schlossman SF et al (1995) Leucocyte typing V: white cell differentiation antigens. Oxford University Press, Oxford

    Google Scholar 

  6. Matesanz-Isabel J, Sintes J, Llinàs L et al (2011) New B-cell CD molecules. Immunol Lett 134:104–112

    Article  PubMed  CAS  Google Scholar 

  7. Kung P, Goldstein G, Reinherz EL, Schlossman SF (1979) Monoclonal antibodies defining distinctive human T cell surface antigens. Science 206:347–349

    Article  PubMed  CAS  Google Scholar 

  8. Reinherz EL, Kung PC, Goldstein G, Schlossman SF (1979) Separation of functional subsets of human T cells by a monoclonal antibody. Proc Natl Acad Sci U S A 76:4061–4065

    Article  PubMed  CAS  Google Scholar 

  9. Meuer SC, Hussey RE, Hodgdon JC et al (1982) Surface structures involved in target recognition by human cytotoxic T lymphocytes. Science 218:471–473

    Article  PubMed  CAS  Google Scholar 

  10. Zhang C, Ao Z, Seth A, Schlossman SF (1996) A mitochondrial membrane protein defined by a novel monoclonal antibody is preferentially detected in apoptotic cells. J Immunol 157: 3980–3987

    PubMed  CAS  Google Scholar 

  11. Zhang C (1998) Monoclonal antibody as a probe for characterization and separation of apoptotic cells. In: Zhu L, Chun J (eds) Apoptosis detection and assay methods. BioTechniques series on molecular laboratory methods. BioTechniques Books, Eaton Publishing, Natick, MA, pp 63–73

    Google Scholar 

  12. Bok RA, Small EJ (2002) Bloodborne biomolecular markers in prostate cancer development and progression. Nat Rev Cancer 2:918–926

    Article  PubMed  CAS  Google Scholar 

  13. Wagner PD, Maruvada P, Srivastava S (2004) Molecular diagnostics: a new frontier in cancer prevention. Exp Rev Mol Diagn 4:503–511

    Article  CAS  Google Scholar 

  14. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  PubMed  CAS  Google Scholar 

  15. Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  PubMed  CAS  Google Scholar 

  16. Smith SL (1996) Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coord 6:109–119

    PubMed  CAS  Google Scholar 

  17. Lupo L, Panzera P, Tandoi F et al (2008) Basiliximab versus steroids in double therapy immunosuppression in liver transplantation a prospective randomized clinical trial. Transplantation 86:925–931

    Article  PubMed  CAS  Google Scholar 

  18. Van den Brande JM, Braat H, van den Brink GR et al (2003) Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 124:1774–1785

    Article  PubMed  Google Scholar 

  19. Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10:301–316

    Article  PubMed  CAS  Google Scholar 

  20. Maloney DG, Grillo-López AJ, White CA et al (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90:2188–2195

    PubMed  CAS  Google Scholar 

  21. Meissner HC, Welliver RC, Chartrand SA et al (1999) Immunoprophylaxis with palivizumab, a humanized respiratory syncytial virus monoclonal antibody, for prevention of respiratory syncytial virus infection in high risk infants: a consensus opinion. Pediatr Infect Dis J 18:223–231

    Article  PubMed  CAS  Google Scholar 

  22. Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305:200–205

    Article  PubMed  CAS  Google Scholar 

  23. Reichert JM (2011) Antibody-based therapeutics to watch in 2011. mAbs 3:76–99

    Article  PubMed  Google Scholar 

  24. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  PubMed  CAS  Google Scholar 

  25. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116

    Article  PubMed  CAS  Google Scholar 

  26. Traggiai E, Becker S, Subbarao K et al (2004) An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10:871–875

    Article  PubMed  CAS  Google Scholar 

  27. Lanzavecchia A, Bernasconi N, Traggiai E et al (2006) Understanding and making use of human memory B cells. Immunol Rev 211: 303–309

    Article  PubMed  CAS  Google Scholar 

  28. Nossal GJV (1992) The molecular and cellular basis of affinity maturation in the antibody response. Cell 68:1–2

    Article  PubMed  CAS  Google Scholar 

  29. Jakobovits A, Amado RG, Yang X, Roskos L, Schwab G (2007) From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 25:1134–1143

    Article  PubMed  CAS  Google Scholar 

  30. Brüggemann M, Neuberger MS (1996) Strategies for expressing human antibody repertoires in transgenic mice. Immunol Today 17: 391–397

    Article  PubMed  Google Scholar 

  31. Green LL (1999) Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231:11–23

    Article  PubMed  CAS  Google Scholar 

  32. Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23: 1117–1125

    Article  PubMed  CAS  Google Scholar 

  33. Davis CG, Gallo ML, Corvalan JRF (1999) Transgenic mice as a source of fully human antibodies for the treatment of cancer. Cancer Metastasis Rev 18:421–425

    Article  PubMed  CAS  Google Scholar 

  34. Zhang C, Xu Y, Gu J, Schlossman SF (1998) A cell surface receptor defined by a mAb mediates a unique type of cell death similar to oncosis. Proc Natl Acad Sci U S A 95:6290–6295

    Article  PubMed  CAS  Google Scholar 

  35. Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169:1747–1756

    Article  PubMed  CAS  Google Scholar 

  36. Trauth BC, Klas C, Peters AMJ et al (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305

    Article  PubMed  CAS  Google Scholar 

  37. Kearney JF, Radbruch A, Liesegang B, Rajewsky K (1979) A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol 123:1548–1550

    PubMed  CAS  Google Scholar 

  38. Shi S-R, Shi Y, Taylor CR (2011) Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem 59:13–32

    Article  PubMed  CAS  Google Scholar 

  39. D’Amico F, Skarmoutsou E, Stivala F (2009) State of the art in antigen retrieval for immunohistochemistry. J Immunol Methods 341:1–18

    Article  PubMed  Google Scholar 

  40. Glassy M (1988) Creating hybridomas by electrofusion. Nature 333:579–580

    Article  PubMed  CAS  Google Scholar 

  41. Ohnishi K, Chiba J, Goto Y, Tokunaga T (1987) Improvement in the basic technology of electrofusion for generation of antibody-producing hybridomas. J Immunol Methods 100:181–189

    Article  PubMed  CAS  Google Scholar 

  42. Long WL, McGuire W, Palombo A, Emini EA (1986) Enhancing the establishment efficiency of hybridoma cells: use of irradiated human diploid fibroblast feeder layers. J Immunol Methods 86:89–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Lena Kikuchi and Nancy Chan for their expertise in hybridoma generation and the technical assistance for validating the protocols described here. The author is especially thankful to Dr. Peter LeMotte, Dr. Thomas Pietzonka and Dr. John Hastewell for helpful advice and support, and to Yuxiang Zhang for his assistance in editing the illustrations in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonghui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, C. (2012). Hybridoma Technology for the Generation of Monoclonal Antibodies. In: Proetzel, G., Ebersbach, H. (eds) Antibody Methods and Protocols. Methods in Molecular Biology, vol 901. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-931-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-931-0_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-930-3

  • Online ISBN: 978-1-61779-931-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics