Skip to main content

Ischemia–Reperfusion Injury of the Mouse Kidney

  • Protocol
  • First Online:
Kidney Development

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 886))

Abstract

Studies of the complex responses of the kidney to acute injury have yielded important insights into mechanisms of tissue injury and repair. A variety of injury models have contributed to this impressive body of knowledge, but the ischemia–reperfusion (IR) model has perhaps been the most widely used. This chapter contains a detailed method description for IR injury in the mouse together with notes on blood sampling and tissue harvesting. The aim of the chapter is to provide the novice with a step-by-step guide to establishing this procedure in their research program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Himmelfarb J, Ikizler TA (2007) Acute kidney injury: changing lexicography, definitions, and epidemiology. Kidney Int 71:971–976

    Article  CAS  PubMed  Google Scholar 

  2. Palevsky PM, Zhang JH, O’Connor TZ et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7–20

    Article  CAS  PubMed  Google Scholar 

  3. Lo LJ, Go AS, Chertow GM et al (2009) Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int 76:893–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lafrance JP, Miller DR (2010) Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol 21:345–352

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ishani A, Xue JL, Himmelfarb J et al (2009) Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 20: 223–228

    Article  PubMed Central  PubMed  Google Scholar 

  6. Heyman SN, Rosenberger C, Rosen S (2010) Experimental ischemia-reperfusion: biases and myths-the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int 77:9–16

    Article  PubMed  Google Scholar 

  7. Hanley MJ (1980) Isolated nephron segments in a rabbit model of ischemic acute renal failure. Am J Physiol 239:F17–F23

    CAS  PubMed  Google Scholar 

  8. Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int 14:31–49

    Article  CAS  PubMed  Google Scholar 

  9. Witzgall R, Brown D, Schwarz C, Bonventre JV (1994) Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93:2175–2188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Imgrund M, Grone E, Grone H et al (1999) Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1. Kidney Int 56:1423–1431

    Article  CAS  PubMed  Google Scholar 

  11. Humphreys BD, Valerius MT, Kobayashi A et al (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291

    Article  CAS  PubMed  Google Scholar 

  12. Humphreys BD, Czerniak S, Dirocco DP et al (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci USA 108(22):9226–9231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Burne-Taney MJ, Yokota N, Rabb H (2005) Persistent renal and extrarenal immune changes after severe ischemic injury. Kidney Int 67: 1002–1009

    Article  PubMed  Google Scholar 

  14. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543, 531p following 143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Delbridge MS, Shrestha BM, Raftery AT, El NAM, Haylor JL (2007) The effect of body temperature in a rat model of renal ischemia-reperfusion injury. Transplant Proc 39:2983–2985

    Article  CAS  PubMed  Google Scholar 

  16. Lin J, Patel SR, Cheng X et al (2005) Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 11:387–393

    Article  CAS  PubMed  Google Scholar 

  17. Schmitt R, Marlier A, Cantley LG (2008) Zag expression during aging suppresses proliferation after kidney injury. J Am Soc Nephrol 19:2375–2383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Schmitt R, Cantley LG (2008) The impact of aging on kidney repair. Am J Physiol Renal Physiol 294:F1265–F1272

    Article  CAS  PubMed  Google Scholar 

  19. Burne MJ, Haq M, Matsuse H, Mohapatra S, Rabb H (2000) Genetic susceptibility to renal ischemia reperfusion injury revealed in a murine model. Transplantation 69:1023–1025

    Article  CAS  PubMed  Google Scholar 

  20. Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem 279: 52282–52292

    Article  CAS  PubMed  Google Scholar 

  21. Dunn SR, Qi Z, Bottinger EP, Breyer MD, Sharma K (2004) Utility of endogenous creatinine clearance as a measure of renal function in mice. Kidney Int 65:1959–1967

    Article  CAS  PubMed  Google Scholar 

  22. Yuen PS, Dunn SR, Miyaji T et al (2004) A simplified method for HPLC determination of creatinine in mouse serum. Am J Physiol Renal Physiol 286:F1116–F1119

    Article  CAS  PubMed  Google Scholar 

  23. Hetu PO, Gingras ME, Vinet B (2010) Development and validation of a rapid liquid chromatography isotope dilution tandem mass spectrometry (LC-IDMS/MS) method for serum creatinine. Clin Biochem 43: 1158–1162

    Article  CAS  PubMed  Google Scholar 

  24. Qi Z, Whitt I, Mehta A et al (2004) Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am J Physiol Renal Physiol 286:F590–F596

    Article  CAS  PubMed  Google Scholar 

  25. Kuehn EW, Park KM, Somlo S, Bonventre JV (2002) Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol 283:F1326–F1336

    CAS  PubMed  Google Scholar 

  26. Ichimura T, Bonventre JV, Bailly V et al (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135–4142

    Article  CAS  PubMed  Google Scholar 

  27. Mishra J, Ma Q, Prada A et al (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543

    Article  CAS  PubMed  Google Scholar 

  28. Paragas N, Qiu A, Zhang Q et al (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17:216–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Oxburgh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oxburgh, L., de Caestecker, M.P. (2012). Ischemia–Reperfusion Injury of the Mouse Kidney. In: Michos, O. (eds) Kidney Development. Methods in Molecular Biology™, vol 886. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-851-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-851-1_32

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-850-4

  • Online ISBN: 978-1-61779-851-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics