Skip to main content

Detection and Quantification of Alternative Splicing Variants Using RNA-seq

  • Protocol
  • First Online:
RNA Abundance Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 883))

Abstract

Next-generation sequencing has enabled genome-wide studies of alternative pre-mRNA splicing, allowing for empirical determination, characterization, and quantification of the expressed RNAs in a sample in toto. As a result, RNA sequencing (RNA-seq) has shown tremendous power to drive biological discoveries. At the same time, RNA-seq has created novel challenges that necessitate the development of increasingly sophisticated computational approaches and bioinformatic tools. In addition to the analysis of massive datasets, these tools also need to facilitate questions and analytical approaches driven by such rich data. HTS and RNA-seq are still in a stage of very rapid evolution and are, therefore, only introduced in general terms. This chapter mainly focuses on the methods for discovery, detection, and quantification of alternatively spliced transcript variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10:833–844

    Article  PubMed  CAS  Google Scholar 

  2. Fox S, Filichkin S, Mockler TC (2009) Applications of ultra-high-throughput sequencing. Methods Mol Biol 553:79–108

    Article  PubMed  CAS  Google Scholar 

  3. Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  4. Nagalakshmi U et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344–1349

    Article  PubMed  CAS  Google Scholar 

  5. Filichkin SA et al (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    Article  PubMed  CAS  Google Scholar 

  6. Li H et al (2008) Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc Natl Acad Sci USA 105:20179–20184

    Article  PubMed  CAS  Google Scholar 

  7. Parkhomchuk D et al (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37:e123

    Article  PubMed  Google Scholar 

  8. Ingolia NT et al (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  PubMed  CAS  Google Scholar 

  9. He Y et al (2008) The antisense transcriptomes of human cells. Science 322:1855–1857

    Article  PubMed  CAS  Google Scholar 

  10. Cloonan N et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    Article  PubMed  CAS  Google Scholar 

  11. Lister R et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  PubMed  CAS  Google Scholar 

  12. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848

    Article  PubMed  CAS  Google Scholar 

  13. Li R et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  PubMed  CAS  Google Scholar 

  14. Bryant DW et al (2010) Supersplat-spliced RNA-seq alignment. Bioinformatics 26:1500–1505

    Article  PubMed  CAS  Google Scholar 

  15. Bryant DW, et al (2011) Gumby—a purely empirical RNA-seq-based approach to genome annotation. Manuscript in Preparation.

    Google Scholar 

  16. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed  CAS  Google Scholar 

  17. Jiang H, Wong WH (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24:2395–2396

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858

    Article  PubMed  CAS  Google Scholar 

  19. Li R et al (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713–714

    Article  PubMed  CAS  Google Scholar 

  20. Smith AD, Xuan Z, Zhang MQ (2008) Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics 9:128

    Article  PubMed  Google Scholar 

  21. Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS One 4:e7767

    Article  PubMed  Google Scholar 

  22. Rumble SM et al (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5:e1000386

    Article  PubMed  Google Scholar 

  23. Lunter G, Goodson M (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21:936–939

    Article  PubMed  CAS  Google Scholar 

  24. Rizk G, Lavenier D (2010) GASSST: global alignment short sequence search tool. Bioinformatics 26:2534–2540

    Article  PubMed  CAS  Google Scholar 

  25. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  Google Scholar 

  26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 25:1754–1760

    Article  PubMed  CAS  Google Scholar 

  27. Wang K et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38:e178

    Article  PubMed  Google Scholar 

  28. Au KF et al (2010) Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Res 38:4570–4578

    Article  PubMed  CAS  Google Scholar 

  29. Denoeud F et al (2008) Annotating genomes with massive-scale RNA sequencing. Genome Biol 9:R175

    Article  PubMed  Google Scholar 

  30. Garber M et al (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    Article  PubMed  CAS  Google Scholar 

  31. Costa V et al (2010) Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol 2010:853916

    Article  PubMed  Google Scholar 

  32. Yassour M et al (2009) Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci USA 106:3264–3269

    Article  PubMed  CAS  Google Scholar 

  33. Kelley DR, Schatz MC, Salzberg SL (2010) Quake: quality-aware detection and correction of sequencing errors. Genome Biol 11:R116

    Article  PubMed  CAS  Google Scholar 

  34. Shi H et al (2010) A parallel algorithm for error correction in high-throughput short-read data on CUDA-enabled graphics hardware. J Comput Biol 17:603–615

    Article  PubMed  CAS  Google Scholar 

  35. Yang X, Dorman KS, Aluru S (2010) Reptile: representative tiling for short read error correction. Bioinformatics 26:2526–2533

    Article  PubMed  Google Scholar 

  36. Kao WC, Chan AH, Song YS (2011) ECHO: a reference-free short-read error correction algorithm. Genome Res 21:1181–1192

    Article  PubMed  CAS  Google Scholar 

  37. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  CAS  Google Scholar 

  38. Birol I, Jackman SD, Nielsen CB (2009) De novo transcriptome assembly with ABySS. Bioinformatics 25:2872–2877

    Article  PubMed  CAS  Google Scholar 

  39. Robertson G et al (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912

    Article  PubMed  CAS  Google Scholar 

  40. Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data ­without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed  CAS  Google Scholar 

  41. De Bruijn NG (1946) A combinatorial problem. Koninklijke Nederlandse Akademie v Wetenschappen 46:6

    Google Scholar 

  42. Griffith M et al (2010) Alternative expression analysis by RNA sequencing. Nat Methods 7:843–847

    Article  PubMed  CAS  Google Scholar 

  43. Trapnell C et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  CAS  Google Scholar 

  44. Katz Y et al (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7:1009–1015

    Article  PubMed  CAS  Google Scholar 

  45. Marioni JC et al (2008) RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed  CAS  Google Scholar 

  46. Jiang H, Wong WH (2009) Statistical inferences for isoform expression in RNA-Seq. Bioinformatics 25:1026–1032

    Article  PubMed  CAS  Google Scholar 

  47. Li B et al (2009) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26:493–500

    Article  PubMed  Google Scholar 

  48. Richard H et al (2010) Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res 38:e112

    Article  PubMed  Google Scholar 

  49. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  CAS  Google Scholar 

  50. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  PubMed  CAS  Google Scholar 

  51. Langmead B, Hansen KD, Leek JT (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11:R83

    Article  PubMed  Google Scholar 

  52. Cumbie JS, et al (2011) GENE-counter: a computational pipeline for the analysis of RNA-Seq data for gene expression differences. PLoS One (6):e25279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. Mockler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bryant, D.W., Priest, H.D., Mockler, T.C. (2012). Detection and Quantification of Alternative Splicing Variants Using RNA-seq. In: Jin, H., Gassmann, W. (eds) RNA Abundance Analysis. Methods in Molecular Biology, vol 883. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-839-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-839-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-838-2

  • Online ISBN: 978-1-61779-839-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics