Skip to main content

In Situ Detection of Mature miRNAs in Plants Using LNA-Modified DNA Probes

  • Protocol
  • First Online:
RNA Abundance Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 883))

Abstract

MicroRNAs (miRNAs) play important roles in development in plants, and some miRNAs show developmentally regulated organ- and tissue-specific expression patterns. Therefore, in situ detection of mature miRNAs is important for understanding the functions of both miRNAs and their targets. The construction of promoter–reporter fusions and examination of their in planta expression have been widely used and the results obtained thus far are rather informative; however, in some cases, the length of promoter that contains the entire regulatory elements is difficult to determine. In addition, traditional in situ hybridization with the antisense RNA fragment as the probe usually fails to detect miRNAs because the mature miRNAs are too short (∼21 nt) to exhibit stable hybridization signals. In recent years, the locked nucleic acid (LNA)-modified DNA probe has been successfully used in animals and plants to detect small RNAs. Here, we describe a modified protocol using LNA-modified DNA probes to detect mature miRNAs in plant ­tissues, including the design of LNA probes and detailed steps for the in situ hybridization experiment, using Arabidopsis miR165 as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, ­biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579:5911–5922

    Article  PubMed  CAS  Google Scholar 

  3. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  PubMed  CAS  Google Scholar 

  4. Chellappan P, Xia J, Zhou X, Gao S, Zhang X, Coutino G, Vazquez F, Zhang W, Jin H (2010) siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res 38:6883–6894

    Article  PubMed  CAS  Google Scholar 

  5. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  6. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  7. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  PubMed  CAS  Google Scholar 

  8. Yang L, Liu Z, Lu F, Dong A, Huang H (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850

    Article  PubMed  CAS  Google Scholar 

  9. Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131:1097–1108

    Article  PubMed  CAS  Google Scholar 

  10. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    Article  PubMed  CAS  Google Scholar 

  11. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  PubMed  CAS  Google Scholar 

  12. Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338

    Article  PubMed  CAS  Google Scholar 

  13. Raman S, Greb T, Peaucelle A, Blein T, Laufs P, Theres K (2008) Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J 55:65–76

    Article  PubMed  CAS  Google Scholar 

  14. Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132

    Article  PubMed  CAS  Google Scholar 

  15. Yao X, Wang H, Li H, Yuan Z, Li F, Yang L, Huang H (2009) Two types of cis-acting elements control the abaxial epidermis-specific transcription of the MIR165a and MIR166a genes. FEBS Lett 583:3711–3717

    Article  PubMed  CAS  Google Scholar 

  16. Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS (2010) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38:1382–1391

    Article  PubMed  CAS  Google Scholar 

  17. Rodriguez JB, Marquez VE, Nicklaus MC, Mitsuya H, Barchi JJ Jr (1994) Conformationally locked nucleoside analogues. Synthesis of dideoxycarbocyclic nucleoside analogues structurally related to neplanocin C. J Med Chem 37:3389–3399

    Article  PubMed  CAS  Google Scholar 

  18. Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1–7

    Article  PubMed  CAS  Google Scholar 

  19. Wengel J, Petersen M, Nielsen KE, Jensen GA, Hakansson AE, Kumar R, Sorensen MD, Rajwanshi VK, Bryld T, Jacobsen JP (2001) LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleosides Nucleotides Nucleic Acids 20:389–396

    Article  PubMed  CAS  Google Scholar 

  20. Hakansson AE, Wengel J (2001) The adenine derivative of alpha-L-LNA (alpha-L-ribo ­configured locked nucleic acid): synthesis and high-affinity hybridization towards DNA, RNA, LNA and alpha-L-LNA complementary sequences. Bioorg Med Chem Lett 11:935–938

    Article  PubMed  CAS  Google Scholar 

  21. Randazzo A, Esposito V, Ohlenschlager O, Ramachandran R, Virgilio A, Mayol L (2005) Structural studies on LNA quadruplexes. Nucleosides Nucleotides Nucleic Acids 24:795–800

    Article  PubMed  CAS  Google Scholar 

  22. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175

    Article  PubMed  Google Scholar 

  23. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311

    Article  PubMed  CAS  Google Scholar 

  24. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3:27–29

    Article  PubMed  CAS  Google Scholar 

  25. Valoczi A, Varallyay E, Kauppinen S, Burgyan J, Havelda Z (2006) Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. Plant J 47:140–151

    Article  PubMed  CAS  Google Scholar 

  26. Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  27. You Y, Moreira BG, Behlke MA, Owczarzy R (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res 34:e60

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to H. Wang for discussion with the manuscript. We thank Dr. Y. Eshed and Dr. I. Pekker for sharing experience on LNA probes. This work was supported by grants from the Chief Scientist Program of Shanghai Institutes for Biological Sciences, the Chinese National Scientific Foundation 30630041, and Chinese Academy of Sciences (KSCX2-YW-N-057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yao, X., Huang, H., Xu, L. (2012). In Situ Detection of Mature miRNAs in Plants Using LNA-Modified DNA Probes. In: Jin, H., Gassmann, W. (eds) RNA Abundance Analysis. Methods in Molecular Biology, vol 883. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-839-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-839-9_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-838-2

  • Online ISBN: 978-1-61779-839-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics