Skip to main content

Isolation, Culture, and Osteogenic/Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells

  • Protocol
  • First Online:
Somatic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 879))

Abstract

Musculoskeletal disorders, as non-healing fractures and large bone defects, articular cartilage and subchondral bone injuries, often result in lifelong chronic pain and compromised quality of life. Although generally a natural process, failure of large bone defects to heal such as after complex fractures, resection of tumours, infections, or revisions of joint replacements remains a critical challenge that requires more appropriate solutions as those currently available. In addition, regeneration of chondral and osteochondral defects continues to be a challenge until to date. A profound understanding of the underlying mechanisms of endogenous regeneration is a prerequisite for successful bone and cartilage regeneration. Presently, one of the most promising therapeutic approaches is cell-based tissue engineering which provides a healthy population of cells to the injured site. Use of differentiated cells has severe limitations; an excellent alternative would be the application of adult marrow stromal cells/mesenchymal stem cells (MSC) which possess extensive proliferation potential and proven capability to differentiate along the osteochondral pathway. The process of osteo-/chondrogenesis can be mimicked in vitro by inducing osteo-chondroprogenitor stem cells to undergo osteogenesis and chondrogenesis through exposure of osteo-/chondrogenic favourable microenvironmental, mechanical, and nutritional conditions. This chapter provides comprehensive protocols for the isolation, expansion, and osteo-/chondrogenic differentiation of adult bone marrow-derived MSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45

    PubMed  CAS  Google Scholar 

  2. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    PubMed  CAS  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  4. Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22:81–91

    PubMed  CAS  Google Scholar 

  5. Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211

    PubMed  CAS  Google Scholar 

  6. Phinney DG, Hill K, Michelson C, DuTreil M, Hughes C, Humphries S, Wilkinson R, Baddoo M, Bayly E (2006) Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells 24:186–198

    PubMed  Google Scholar 

  7. Grassel S, Ahmed N, Gottl C, Grifka J (2009) Gene and protein expression profile of naive and osteo-chondrogenically differentiated rat bone marrow-derived mesenchymal progenitor cells. Int J Mol Med 23:745–755

    PubMed  Google Scholar 

  8. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902

    PubMed  Google Scholar 

  9. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    PubMed  CAS  Google Scholar 

  10. Phinney DG, Kopen G, Isaacson RL, Prockop DJ (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72:570–585

    PubMed  CAS  Google Scholar 

  11. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    PubMed  CAS  Google Scholar 

  12. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    PubMed  CAS  Google Scholar 

  13. Kotobuki N, Hirose M, Takakura Y, Ohgushi H (2004) Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs 28:33–39

    PubMed  Google Scholar 

  14. Sawhney AS, Pathak CP, Hubbell JA (1993) Interfacial photopolymerization of poly(ethylene glycol)-based hydrogels upon alginate-poly(l-lysine) microcapsules for enhanced biocompatibility. Biomaterials 14:1008–1016

    PubMed  CAS  Google Scholar 

  15. Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 205:194–201

    PubMed  CAS  Google Scholar 

  16. Bosch P, Pratt SL, Stice SL (2006) Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol Reprod 74:46–57

    PubMed  CAS  Google Scholar 

  17. Rho GJ, Kumar BM, Balasubramanian SS (2009) Porcine mesenchymal stem cells—­current technological status and future perspective. Front Biosci 14:3942–3961

    PubMed  CAS  Google Scholar 

  18. Kato Y, Imabayashi H, Mori T, Tani T, Taniguchi M, Higashi M, Matsumoto M, Umezawa A, Tsunoda Y (2004) Nuclear transfer of adult bone marrow mesenchymal stem cells: developmental totipotency of tissue-specific stem cells from an adult mammal. Biol Reprod 70:415–418

    PubMed  CAS  Google Scholar 

  19. Mrugala D, Bony C, Neves N, Caillot L, Fabre S, Moukoko D, Jorgensen C, Noel D (2008) Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis 67:288–295

    PubMed  CAS  Google Scholar 

  20. Rentsch C, Hess R, Rentsch B, Hofmann A, Manthey S, Scharnweber D, Biewener A, Zwipp H (2010) Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds. In Vitro Cell Dev Biol Anim 46:624–634

    PubMed  CAS  Google Scholar 

  21. Hoemann CD, Sun J, Chrzanowski V, Buschmann MD (2002) A multivalent assay to detect glycosaminoglycan, protein, collagen, RNA, and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage. Anal Biochem 300:1–10

    PubMed  CAS  Google Scholar 

  22. Jenei-Lanzl Z, Straub RH, Dienstknecht T, Huber M, Hager M, Grassel S, Kujat R, Angele MK, Nerlich M, Angele P (2010) Estradiol inhibits chondrogenic differentiation of mesenchymal stem cells via nonclassic signaling. Arthritis Rheum 62:1088–1096

    PubMed  CAS  Google Scholar 

  23. Ahmed N, Vogel B, Rohde E, Strunk D, Grifka J, Schulz MB, Grassel S (2006) CD45-positive cells of haematopoietic origin enhance chondrogenic marker gene expression in rat marrow stromal cells. Int J Mol Med 18:233–240

    PubMed  CAS  Google Scholar 

  24. Ahmed N, Dreier R, Gopferich A, Grifka J, Grassel S (2007) Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol Biochem 20:665–678

    PubMed  CAS  Google Scholar 

  25. Sulc K, Neuwirt J, Travnicek T, Kobylka P, Radikovska E (1977) Bone marrow cell separation on Ficoll gradient. Haematologia (Budap) 11:41–46

    CAS  Google Scholar 

  26. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    PubMed  CAS  Google Scholar 

  27. Short BJ, Brouard N, Simmons PJ (2009) Prospective isolation of mesenchymal stem cells from mouse compact bone. Methods Mol Biol 482:259–268

    PubMed  CAS  Google Scholar 

  28. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T, Shimmura S, Miyawaki A, Nakagawa T, Suda T, Okano H, Matsuzaki Y (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    PubMed  CAS  Google Scholar 

  29. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89:1235–1249

    PubMed  CAS  Google Scholar 

  30. Xu S, De Becker A, Van Camp B, Vanderkerken K, Van RI (2010) An improved harvest and in vitro expansion protocol for murine bone marrow-derived mesenchymal stem cells. J Biomed Biotechnol 2010:105940

    PubMed  Google Scholar 

  31. Roostaeian J, Carlsen B, Simhaee D, Jarrahy R, Huang W, Ishida K, Rudkin GH, Yamaguchi DT, Miller TA (2006) Characterization of growth and osteogenic differentiation of rabbit bone marrow stromal cells. J Surg Res 133:76–83

    PubMed  CAS  Google Scholar 

  32. Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413

    PubMed  CAS  Google Scholar 

  33. Huang CY, Reuben PM, Cheung HS (2005) Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 23:1113–1121

    PubMed  CAS  Google Scholar 

  34. Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG (2007) Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28:3217–3227

    PubMed  CAS  Google Scholar 

  35. Bosnakovski D, Mizuno M, Kim G, Ishiguro T, Okumura M, Iwanaga T, Kadosawa T, Fujinaga T (2004) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Exp Hematol 32:502–509

    PubMed  CAS  Google Scholar 

  36. Rhodes NP, Srivastava JK, Smith RF, Longinotti C (2004) Heterogeneity in proliferative potential of ovine mesenchymal stem cell colonies. J Mater Sci Mater Med 15:397–402

    PubMed  CAS  Google Scholar 

  37. Zscharnack M, Hepp P, Richter R, Aigner T, Schulz R, Somerson J, Josten C, Bader A, Marquass B (2010) Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model. Am J Sports Med 38:1857–1869

    PubMed  Google Scholar 

  38. McCarty RC, Gronthos S, Zannettino AC, Foster BK, Xian CJ (2009) Characterisation and developmental potential of ovine bone marrow derived mesenchymal stem cells. J Cell Physiol 219:324–333

    PubMed  CAS  Google Scholar 

  39. Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ (2001) Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 19:738–749

    PubMed  CAS  Google Scholar 

  40. Hegewald AA, Ringe J, Bartel J, Kruger I, Notter M, Barnewitz D, Kaps C, Sittinger M (2004) Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell 36:431–438

    PubMed  CAS  Google Scholar 

  41. Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM (2006) Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet Surg 35:601–610

    PubMed  Google Scholar 

  42. Kisiday JD, Hale BW, Almodovar JL, Lee CM, Kipper MJ, Wayne MC, Frisbie DD (2010) Expansion of mesenchymal stem cells on fibrinogen-rich protein surfaces derived from blood plasma. J Tissue Eng Regen Med 5:8

    Google Scholar 

  43. Bourzac C, Smith LC, Vincent P, Beauchamp G, Lavoie JP, Laverty S (2010) Isolation of equine bone marrow-derived mesenchymal stem cells: a comparison between three protocols. Equine Vet J 42:519–527

    PubMed  CAS  Google Scholar 

  44. Smith RK, Korda M, Blunn GW, Goodship AE (2003) Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 35:99–102

    PubMed  CAS  Google Scholar 

  45. Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF (2007) Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. Am J Vet Res 68:1095–1105

    PubMed  CAS  Google Scholar 

  46. Eslaminejad MB, Nikmahzar A, Taghiyar L, Nadri S, Massumi M (2006) Murine mesenchymal stem cells isolated by low density primary culture system. Dev Growth Differ 48:361–370

    PubMed  CAS  Google Scholar 

  47. Nadri S, Soleimani M (2007) Isolation murine mesenchymal stem cells by positive selection. In Vitro Cell Dev Biol Anim 43:276–282

    PubMed  CAS  Google Scholar 

  48. Lapi S, Nocchi F, Lamanna R, Passeri S, Iorio M, Paolicchi A, Urciuoli P, Coli A, Abramo F, Miragliotta V, Giannessi E, Stornelli MR, Vanacore R, Stampacchia G, Pisani G, Borghetti L, Scatena F (2008) Different media and supplements modulate the clonogenic and expansion properties of rabbit bone marrow mesenchymal stem cells. BMC Res Notes 1:53

    PubMed  Google Scholar 

  49. Rainaldi G, Pinto B, Piras A, Vatteroni L, Simi S, Citti L (1991) Reduction of proliferative heterogeneity of CHEF18 Chinese hamster cell line during the progression toward tumorigenicity. In Vitro Cell Dev Biol 27A:949–952

    PubMed  CAS  Google Scholar 

  50. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    PubMed  CAS  Google Scholar 

  51. Muraglia A, Corsi A, Riminucci M, Mastrogiacomo M, Cancedda R, Bianco P, Quarto R (2003) Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells. J Cell Sci 116:2949–2955

    PubMed  CAS  Google Scholar 

  52. Ong SM, Zhang C, Toh YC, Kim SH, Foo HL, Tan CH, van Noort D, Park S, Yu H (2008) A gel-free 3D microfluidic cell culture system. Biomaterials 29:3237–3244

    PubMed  CAS  Google Scholar 

  53. Tortelli F, Cancedda R (2009) Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro. Eur Cell Mater 17:1–14

    PubMed  CAS  Google Scholar 

  54. Cuddihy MJ, Kotov NA (2008) Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. Tissue Eng Part A 14:1639–1649

    PubMed  CAS  Google Scholar 

  55. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, Pagani S, Guizzardi S, Causa F, Giunti A (2003) Osteoblast growth and function in porous poly epsilon-caprolactone matrices for bone repair: a preliminary study. Biomaterials 24:3815–3824

    PubMed  CAS  Google Scholar 

  56. Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11:43–56

    PubMed  CAS  Google Scholar 

  57. van den Dolder J, Bancroft GN, Sikavitsas VI, Spauwen PH, Jansen JA, Mikos AG (2003) Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J Biomed Mater Res A 64:235–241

    PubMed  Google Scholar 

  58. Storrie H, Stupp SI (2005) Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials 26:5492–5499

    PubMed  CAS  Google Scholar 

  59. Mastrogiacomo M, Cancedda R, Quarto R (2001) Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage 9(suppl A):S36–S40

    PubMed  Google Scholar 

  60. Mastrogiacomo M, Corsi A, Francioso E, Di Comite M, Monetti F, Scaglione S, Favia A, Crovace A, Bianco P, Cancedda R (2006) Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate. Tissue Eng 12:1261–1273

    PubMed  CAS  Google Scholar 

  61. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27:3230–3237

    PubMed  CAS  Google Scholar 

  62. Mastrogiacomo M, Papadimitropoulos A, Cedola A, Peyrin F, Giannoni P, Pearce SG, Alini M, Giannini C, Guagliardi A, Cancedda R (2007) Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption. Biomaterials 28:1376–1384

    PubMed  CAS  Google Scholar 

  63. Jones AC, Arns CH, Hutmacher DW, Milthorpe BK, Sheppard AP, Knackstedt MA (2009) The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 30:1440–1451

    PubMed  CAS  Google Scholar 

  64. Liu H, Fan H, Toh SL, Goh JC (2008) A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials 29:1443–1453

    PubMed  CAS  Google Scholar 

  65. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2005) Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 319:243–253

    PubMed  Google Scholar 

  66. Zhang L, Su P, Xu C, Yang J, Yu W, Huang D (2010) Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol Lett 32:1339–1346

    PubMed  CAS  Google Scholar 

  67. Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60:243–262

    PubMed  CAS  Google Scholar 

  68. Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27:307–314

    PubMed  CAS  Google Scholar 

  69. Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457

    PubMed  CAS  Google Scholar 

  70. Bryant SJ, Anseth KS (2001) The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22:619–626

    PubMed  CAS  Google Scholar 

  71. Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 59:63–72

    PubMed  CAS  Google Scholar 

  72. Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M, Staudenmaier R, Goepferich A, Blunk T (2007) Long-term stable fibrin gels for cartilage engineering. Biomaterials 28:55–65

    PubMed  CAS  Google Scholar 

  73. Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818

    PubMed  CAS  Google Scholar 

  74. Angele P, Muller R, Schumann D, Englert C, Zellner J, Johnstone B, Yoo J, Hammer J, Fierlbeck J, Angele MK, Nerlich M, Kujat R (2009) Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 91:416–427

    PubMed  Google Scholar 

  75. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    PubMed  CAS  Google Scholar 

  76. Li WJ, Danielson KG, Alexander PG, Tuan RS (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 67:1105–1114

    PubMed  Google Scholar 

  77. Mueller MB, Tuan RS (2008) Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum 58:1377–1388

    PubMed  CAS  Google Scholar 

  78. Neuhuber B, Swanger SA, Howard L, Mackay A, Fischer I (2008) Effects of plating density and culture time on bone marrow stromal cell characteristics. Exp Hematol 36:1176–1185

    PubMed  Google Scholar 

  79. Farrell E, O’Brien FJ, Doyle P, Fischer J, Yannas I, Harley BA, O’Connell B, Prendergast PJ, Campbell VA (2006) A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng 12:459–468

    PubMed  CAS  Google Scholar 

  80. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro ­chondrogenesis of bone marrow-derived ­mesenchymal progenitor cells. Exp Cell Res 238:265–272

    PubMed  CAS  Google Scholar 

  81. Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM (2008) Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg 37:713–724

    PubMed  Google Scholar 

  82. Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ (2004) Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech 37:595–604

    PubMed  Google Scholar 

  83. Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD (2008) Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J Orthop Res 26:322–331

    PubMed  CAS  Google Scholar 

  84. Ye CP, Heng BC, Liu H, Toh WS, Cao T (2007) Culture media conditioned by heat-shocked osteoblasts enhances the osteogenesis of bone marrow-derived mesenchymal stromal cells. Cell Biochem Funct 25:267–276

    PubMed  CAS  Google Scholar 

  85. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85

    PubMed  CAS  Google Scholar 

  86. Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T, Prantl L, Kujat R, Nerlich M, Tuan RS, Angele P (2010) Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning. Cells Tissues Organs 192:158–166

    PubMed  CAS  Google Scholar 

  87. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457

    PubMed  CAS  Google Scholar 

  88. Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today 75:200–212

    PubMed  CAS  Google Scholar 

  89. De Franceschi L, Grigolo B, Roseti L, Facchini A, Fini M, Giavaresi G, Tschon M, Giardino R (2005) Transplantation of chondrocytes seeded on collagen-based scaffold in cartilage defects in rabbits. J Biomed Mater Res A 75:612–622

    PubMed  Google Scholar 

  90. Hoshikawa A, Nakayama Y, Matsuda T, Oda H, Nakamura K, Mabuchi K (2006) Encapsulation of chondrocytes in photopolymerizable styrenated gelatin for cartilage tissue engineering. Tissue Eng 12:2333–2341

    PubMed  CAS  Google Scholar 

  91. Bradham DM, Passaniti A, Horton WE Jr (1995) Mesenchymal cell chondrogenesis is stimulated by basement membrane matrix and inhibited by age-associated factors. Matrix Biol 14:561–571

    PubMed  CAS  Google Scholar 

  92. Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26:7082–7094

    PubMed  CAS  Google Scholar 

  93. Diduch DR, Jordan LC, Mierisch CM, Balian G (2000) Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy 16:571–577

    PubMed  CAS  Google Scholar 

  94. Almqvist KF, Wang L, Wang J, Baeten D, Cornelissen M, Verdonk R, Veys EM, Verbruggen G (2001) Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann Rheum Dis 60:781–790

    PubMed  CAS  Google Scholar 

  95. Muller FA, Muller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963

    PubMed  Google Scholar 

  96. Montembault A, Tahiri K, Korwin-Zmijowska C, Chevalier X, Corvol MT, Domard A (2006) A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Biochimie 88:551–564

    PubMed  CAS  Google Scholar 

  97. Fan H, Hu Y, Li X, Wu H, Lv R, Bai J, Wang J, Qin L (2006) Ectopic cartilage formation induced by mesenchymal stem cells on porous gelatin-chondroitin-hyaluronate scaffold containing microspheres loaded with TGF-beta1. Int J Artif Organs 29:602–611

    PubMed  CAS  Google Scholar 

  98. Facchini A, Lisignoli G, Cristino S, Roseti L, De Franceschi L, Marconi E, Grigolo B (2006) Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold. Biorheology 43:471–480

    PubMed  Google Scholar 

  99. Dounchis JS, Bae WC, Chen AC, Sah RL, Coutts RD, Amiel D (2000) Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res (377):248–264

    Google Scholar 

  100. Freed LE, Grande DA, Lingbin Z, Emmanual J, Marquis JC, Langer R (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28:891–899

    PubMed  CAS  Google Scholar 

  101. Carranza-Bencano A, Armas-Padron JR, Gili-Miner M, Lozano MA (2000) Carbon fiber implants in osteochondral defects of the rabbit patella. Biomaterials 21:2171–2176

    PubMed  CAS  Google Scholar 

  102. Messner K (1993) Hydroxylapatite supported Dacron plugs for repair of isolated full-thickness osteochondral defects of the rabbit femoral condyle: mechanical and histological evaluations from 6-48 weeks. J Biomed Mater Res 27:1527–1532

    PubMed  CAS  Google Scholar 

  103. Defrere J, Franckart A (1992) Teflon/polyurethane arthroplasty of the knee: the first 2 years preliminary clinical experience in a new concept of artificial resurfacing of full thickness cartilage lesions of the knee. Acta Chir Belg 92:217–227

    PubMed  CAS  Google Scholar 

  104. Kose GT, Korkusuz F, Ozkul A, Soysal Y, Ozdemir T, Yildiz C, Hasirci V (2005) Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials 26:5187–5197

    PubMed  Google Scholar 

  105. Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M (2003) The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 24:5163–5171

    PubMed  CAS  Google Scholar 

  106. Estrada LE, Dodge GR, Richardson DW, Farole A, Jimenez SA (2001) Characterization of a biomaterial with cartilage-like properties expressing type X collagen generated in vitro using neonatal porcine articular and growth plate chondrocytes. Osteoarthritis Cartilage 9:169–177

    PubMed  CAS  Google Scholar 

  107. Martens PJ, Bryant SJ, Anseth KS (2003) Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 4:283–292

    PubMed  CAS  Google Scholar 

  108. Hsu SH, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC (2006) Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artif Organs 30:42–55

    PubMed  CAS  Google Scholar 

  109. Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–125

    PubMed  CAS  Google Scholar 

  110. Au A, Ha J, Polotsky A, Krzyminski K, Gutowska A, Hungerford DS, Frondoza CG (2003) Thermally reversible polymer gel for chondrocyte culture. J Biomed Mater Res A 67:1310–1319

    PubMed  Google Scholar 

  111. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10001

    PubMed  CAS  Google Scholar 

  112. Budde B, Blumbach K, Ylostalo J, Zaucke F, Ehlen HW, Wagener R, Ala-Kokko L, Paulsson M, Bruckner P, Grassel S (2005) Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. Mol Cell Biol 25:10465–10478

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Grässel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grässel, S., Stöckl, S., Jenei-Lanzl, Z. (2012). Isolation, Culture, and Osteogenic/Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. In: Singh, S. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 879. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-815-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-815-3_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-814-6

  • Online ISBN: 978-1-61779-815-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics