Skip to main content

Use of a Callus-Specific Selection System to Develop Transgenic Rice Seed Accumulating a High Level of Recombinant Protein

  • Protocol
  • First Online:
Transgenic Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 847))

Abstract

A mutated rice acetolactate synthase (mALS) gene expressed under the control of the rice callus-specific promoter (CSP) (CSP:mALS) becomes a useful selectable marker for producing transgenic rice seed with higher accumulation of recombinant protein. When amounts of transgene products in mature seeds are compared between transgenic rice lines containing the CSP:mALS selection gene cassette and those with the hygromycin phosphotransferase (HPT) gene under the control of the CaMV 35S promoter (35S:HPT), the former transgenic rice seeds usually resulted in 1.2- to 2-fold higher accumulation of transgene products than in the latter. It is considered that specific expression of a selection marker gene at the selection stage may allow enhanced transgene products in seeds.

This chapter represents a highly efficient Agrobacterium-mediated rice transformation system using the CSP:mALS gene cassette in place of the conventional constitutive selection using bacterial antibiotics. This selection stage specific expression using a rice-derived selection marker mALS will be especially beneficial for developing transgenic rice seeds accumulating bioactive proteins or peptides contributing to human health promotion; pharmaceutical products such as vaccine, antibodies, and biopharmaceuticals; and industrial enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    mL AA-1 (1 g MnSO4∙4H2O, 0.3 g H3BO4, 0.2 g ZnSO4∙7H2O, 25 mg Na2MoO4∙2H2O, 2.5 mg CuSO4∙5H2O, 2.5 mg CoCl2∙6H2O, 75 mg KI), 100 mL AA-2 (15 g CaCl2∙2H2O), 100 mL AA-3 (25 g MgSO4∙7H2O), 100 mL AA-4 (4 g Fe-EDTA), 100 mL AA-5 (15 g NaH2PO4∙2H2O), 100 mL AA-6 (20 mg nicotinic acid, 200 mg thiamine hydrochloride, 20 mg pyridoxine monohydrochloride, 2 g myo-inositol), 100 mL AA-7 (1.77 g  l-arginine, 95 mg glycine).

  2. 2.

    L DKN-macro (20× stock) (5.46 g NaH2PO4, 16 g KNO3, 1.34 g (NH4)2SO4, 5 g MgSO4, 3 g CaCl2∙2H2O), 100 mL DKN-micro (1,000× stock) (0.16 g MnSO4∙4H2O, 0.22 g ZnSO4∙7H2O, 0.3 g H3BO3, 12.5 mg CuSO4∙5H2O, 12.5 mg Na2MoO4∙2H2O), 100 mL modified B5-vitamins (1,000× stock) (100 mg nicotinic acid, 1 g thiamine hydrochloride, 100 mg pyridoxine monohydrochloride, 10 g myo-inositol, 200 mg glycine), 100 mL R2-iron (1,000× stock) (750 mg Na2∙EDTA, 550 mg FeSO4∙7H2O).

References

  1. Takaiwa, F., Takagi, H., Hirose, S., and Wakasa, Y. (2007) Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol. J. 5, 84–92.

    Article  PubMed  CAS  Google Scholar 

  2. Wakasa, Y., Yang, L., and Takaiwa, F. (2009) Production of bioactive peptide in transgenic rice seed, in Modification of Seed Composition to Promote Health and Nutrition, Agronomy Monograph Series 51, ASA and SSSA, USA. pp.101–120.

    Google Scholar 

  3. Chaleff, R. S. and Mauvais, C. J. (1984) Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224, 1443–1445.

    Article  PubMed  CAS  Google Scholar 

  4. Shimizu, T., Nakayama, I., Nagayama, K., Miyazawa, T., and Nezu, Y. (2002) Acetolactate synthase inhibitors, in Herbicide Classes in Development. Vol. 1 (Boger, P., Wakabayashi, K., and Hirai, K. eds.), Springer, Berlin, pp.1–41.

    Google Scholar 

  5. Charest, P. J., Hattori, J., DeMoor, J., Iyer, V. N., and Miki, B. L (1990) In vitro study of transgenic tobacco expressing Arabidopsis wild type and mutant acetohydroxyacid synthase genes. Plant Cell Rep. 8, 643–646.

    Article  CAS  Google Scholar 

  6. Gabard, J. M., Charest, P. J., Iyer, V. N., and Miki BL (1989) Cross-resistance to short residual sulfonylurea herbicides in transgenic tobacco plants. Plant Physiol. 91, 574–580.

    Article  PubMed  CAS  Google Scholar 

  7. Li, Z., Hayashimoto, A., and Murai, N. (1992) A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol. 100, 662–668.

    Article  PubMed  CAS  Google Scholar 

  8. Ray, K., Jagannath, A., Gangwani, S. A., Burma, P. K., and Pental, D. (2004) Mutant acetolactate synthase gene is an efficient in vitro selectable marker for the genetic transformation of Brassica juncea (oilseed mustard). J. Plant Physiol. 161, 1079–1083.

    Article  PubMed  CAS  Google Scholar 

  9. Okuzaki, A., Shimizu, T., Kaku, K., Kawai, K., and Toriyama, K. (2007) A novel mutated acetolactate synthase gene conferring specific resistance to pyrimidinyl carboxy herbicides in rice. Plant Mol Biol. 64, 219–224.

    Article  PubMed  CAS  Google Scholar 

  10. Wakasa, Y., Ozawa, K., and Takaiwa, F. (2007) Agrobacterium-mediated transformation of a low glutelin mutant of ‘Koshihikari’ rice variety using the mutated-acetolactate synthase gene derived from rice genome as a selectable marker. Plant Cell Rep. 26, 1567–1573.

    Article  PubMed  CAS  Google Scholar 

  11. Wakasa, Y., Ozawa, K., and Takaiwa, F. (2009) Higher-level accumulation of foreign gene products in transgenic rice seeds by the callus-specific selection system. J. Biosci. Bioeng. 107, 78–83.

    Article  PubMed  CAS  Google Scholar 

  12. Chu, C. C., Wang, C. C., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y., and Bi, F. Y. (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Scientia Sinica 18, 659–668.

    Google Scholar 

  13. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–493.

    Article  CAS  Google Scholar 

  14. Ogawa, T., Fukuoka, H., Yano, H., and Ohkawa, Y. (1999) Relationships between nitrite reductase activity and genotype-dependent callus growth in rice cell cultures. Plant Cell Rep. 18, 576–581.

    Article  CAS  Google Scholar 

  15. Daigen, M., Kawakami, O., and Nagasawa, Y. (2000) Efficient anther culture method of the japonica rice cultivar Koshihikari. Breed Sci. 50, 197–202.

    Article  Google Scholar 

  16. Ozawa, K. and Kawahigashi, H. (2006) Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci. 170, 384–393.

    Article  CAS  Google Scholar 

  17. Parkhi, V., Ray, M., Tan, J., Oliva, N., Rehana, S., Bandyopadhyay, A., Torrizo, L., Ghole, V., Datta, K., and Datta, S. K. (2005) Molecular characterization of marker-free transgenic lines of indica rice that accumulate carotenoids in seed endosperm. Mol. Gen. Genomics 274, 325–336.

    Article  CAS  Google Scholar 

  18. Saika, H. and Toki, S. (2010) Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep. 29, 1351–1364.

    Article  PubMed  CAS  Google Scholar 

  19. Ozawa, K. (2009) Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Plant Sci. 176, 522–527.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by research grants from the Ministry of Agriculture, Forestry, and Fishery of Japan (Genomics and Agricultural Innovation: GMC0003) to F. T. and Grant-in-Aid for JSPS fellows to Y. W. from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Takaiwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wakasa, Y., Takaiwa, F. (2012). Use of a Callus-Specific Selection System to Develop Transgenic Rice Seed Accumulating a High Level of Recombinant Protein. In: Dunwell, J., Wetten, A. (eds) Transgenic Plants. Methods in Molecular Biology, vol 847. Humana Press. https://doi.org/10.1007/978-1-61779-558-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-558-9_36

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-557-2

  • Online ISBN: 978-1-61779-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics