Skip to main content

Creation of New Metabolic Pathways or Improvement of Existing Metabolic Enzymes by In Vivo Evolution in Escherichia coli

  • Protocol
  • First Online:
Microbial Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 834))

Abstract

A method for in vivo evolution of metabolic pathways in bacteria is described. This method is a powerful tool for synthetic biology type of metabolic design and can lead to the creation of new metabolic pathways or the improvement of existing metabolic enzymes. The proposed strategy also permits to relate the evolved phenotype to the genotype and to analyze evolution phenomenon at the genetic, biochemical, and metabolic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atwood, K. C., Schneider, L. K., Ryan, F. J., (1951) Selective mechanisms in bacteria. Cold Spring Harbor Symp. Quant. Biol. 16, 345–355.

    CAS  Google Scholar 

  2. Dykhuizen, D. E., (1990) Experimental studies of natural selection in bacteria. Annu. Rev. Ecol. Syst. 21, 373–398.

    Article  Google Scholar 

  3. Hall, B.G., Zuzel T., (1980) Evolution of a new enzymatic function by recombination within a gene. Proc. Natl. Acad. Sci. USA. 77, 3529–3533.

    Article  PubMed  CAS  Google Scholar 

  4. Hall, B.G., (1981) Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry. 20, 4042–4049.

    Article  PubMed  CAS  Google Scholar 

  5. Lu, Z., Cabiscol, E., Obradorsi, N., Tamarit, J., Ros, J., Aguilari, J., Lin, E.C.C., 1998. Evolution of an Escherichia coli Protein with Increased Resistance to Oxidative Stress. J. Biol. Chem. 273, 8308–8316.

    Article  PubMed  CAS  Google Scholar 

  6. Lee D-H and Palsson B. (2010) Adaptive evolution of Escherichia coli K12 MG16555 during growth on a nonnative carbon source, L 1.2 propanediol. Appl. Environ. Microb. 76, 4158–4168.

    Article  CAS  Google Scholar 

  7. Membrillo-Hernandez, J., Echave, P., Cabiscol, E., Tamarit, J., Ros, J., Lin, E.C.C. (2000) Evolution of the adhE Gene Product of Escherichia coli from a Functional Reductase to a Dehydrogenase. J. Biol. Chem . 275, 33869–33875.

    Article  PubMed  CAS  Google Scholar 

  8. Hua Q., Joyce A.R., Palsson B. and Fong S. S. (2007) Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl. Environ. Microb. 73, 4639–4647.

    Article  CAS  Google Scholar 

  9. Applebee M. K., Herrgård MJ, Palsson BØ. (2008) Impact of individual mutations on increased fitness in adaptively evolved strains of Escherichia coli. J. bacteriol. 190, 5087–5094.

    Article  PubMed  CAS  Google Scholar 

  10. Meynial-Salles I.,  Forchammer N., Croux C. Girbal L., and Soucaille P. (2007) Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Met Eng. 9, 152–159.

    Article  CAS  Google Scholar 

  11. Chateau M., Gonzalez B., Meynial-Salles I., Soucaille P. Zink O. (2005) Method for the preparation of an evolved microorganism for the creation or the modification of metabolic pathways: US patent 205/0054060.

    Google Scholar 

  12. Auriol C., Bestel-Corre G., Claude J. B., Soucaille P. and Meynial-Salles I. (2011) Stress induced evolution of Escherichia coli points to new concepts in respiratory cofactor selectivity. Proc. Natl. Acad. Sci USA. 108, 1278–1283.

    Article  PubMed  CAS  Google Scholar 

  13. Datsenko, K. A., Wanner, B. L., 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  14. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene. 158, 9–14.

    Article  PubMed  CAS  Google Scholar 

  15. Kues U. and Stalh U. (1989) Replication plasmids in Gram-Negative Bacteria. Microbiological reviews. 53, 491–516.

    PubMed  CAS  Google Scholar 

  16. Herring C.D. CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BØ (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet. 38, 1406–1412.

    Article  PubMed  CAS  Google Scholar 

  17. Conrad T.M., Joyce AR, Applebee MK, Barrett CL, Xie B, Gao Y, Palsson BØ. (2009) Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol. 10, R118.

    Google Scholar 

  18. Burgard A., Pharkya P. and Maranas C. (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization: Biotechnol. Bioeng. 84, 647–657.

    Article  CAS  Google Scholar 

  19. Patil K. R., Rocha I., Forster J. and Nielsen J. (2005) Evolutionary programming as a platform for in silico metabolic engineering: BMC Bioinformatics, 6. 1–12.

    Google Scholar 

  20. Miller JH (1992) A short course in bacterial genetics. A laboratory manual and handbook for Escherichica coli and related bacteria.

    Google Scholar 

  21. Meynial-Salles I., Cervin M. A. and Soucaille P. (2005). New tool for metabolic pathway engineering in E. coli: one step method to modulate the expression of chromosomal genes: Appl. Environ. Microbiol. 71, 2140–2144.

    Google Scholar 

Download references

Acknowledgments

This work was supported through several independent collaborations with both Genencor and Metabolic Explorer companies, FP5 European project (contract nº QLRT-1999-01364), and the French National Research Agency (contract PRIB-2005 Bioglycol).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Meynial-Salles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Meynial-Salles, I., Soucaille, P. (2012). Creation of New Metabolic Pathways or Improvement of Existing Metabolic Enzymes by In Vivo Evolution in Escherichia coli . In: Cheng, Q. (eds) Microbial Metabolic Engineering. Methods in Molecular Biology, vol 834. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-483-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-483-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-482-7

  • Online ISBN: 978-1-61779-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics