Skip to main content

Screening for Cellulases with Industrial Value and Their Use in Biomass Conversion

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 834))

Abstract

Cellulose is an easily renewable and highly occurring resource. To take advantage of this great potential, there is a constant need of new cellulose degrading enzymes. In industrial applications enzymes have to function under extreme conditions like high temperature, very acidic or basic pH and different solvents. Cellulases have a huge area of application, for example the textile and food industry as well as the generation of bioethanol as an alternative energy source. They have the ability to yield a great energetic potential, but there is still a lack of economical technologies to conquer the stability of the cellulose structure. Via metagenomic research and well-directed screening, it is possible to detect new cellulases, which are active under tough industrial conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Beguin, P. and Aubert, J.P. (1994) The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58.

    Article  PubMed  CAS  Google Scholar 

  2. Lynd, L. R. and Zhang, Y. (2002) Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol. Bioeng. 77, 467–475.

    Article  PubMed  CAS  Google Scholar 

  3. Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.-P. and Davies, G. (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. 92, 7090–7094.

    Article  PubMed  CAS  Google Scholar 

  4. Bayer, E. A., Chanzy, H., Lamed, R., and Shoham, Y. (1998) Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8, 548–557.

    Article  PubMed  CAS  Google Scholar 

  5. Kumar, R., Singh, S., and Singh, O. V. (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377–391.

    Article  PubMed  CAS  Google Scholar 

  6. Birsan, C., Johnson, P., Joshi, M., MacLeod, A., McIntosh, L., Monem, V., et al. (1998) Mechanisms of cellulases and xylanases. Biochem. Soc. Trans. 26, 156–160.

    PubMed  CAS  Google Scholar 

  7. Hilden, L. and Johansson, G. (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol. Lett. 26, 1683–1693.

    Article  PubMed  CAS  Google Scholar 

  8. Ando, S., Ishida, H., Kosugi, Y., and Ishikawa, K. (2002) Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl. Environ. Microbiol. 68, 430–433.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang, Y. H. and Lynd, L. R. (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88, 797–824.

    Article  PubMed  CAS  Google Scholar 

  10. Bolam, D. N., Ciruela, A., McQueen-Mason, S., Simpson, P., Williamson, M. P., Rixon, J. E., et al. (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem. J. 331 (Pt 3), 775–781.

    PubMed  CAS  Google Scholar 

  11. Carvalho, A. L., Goyal, A., Prates, J. A., Bolam, D. N., Gilbert, H. J., Pires, V. M., et al. (2004) The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. J. Biol. Chem. 279, 34785–34793.

    Article  PubMed  CAS  Google Scholar 

  12. Coutinho, J. B., Gilkes, N. R., Kilburn, D. G., Warren, R. A. J., and R. C. Miller, J. (1993) The nature of the cellulose-binding domain effects the activities of a bacterial endoglucanase on different forms of cellulose. FEMS Microbiol. Lett. 113, 211–217.

    Google Scholar 

  13. Fontes, C. M., Clarke, J. H., Hazlewood, G. P., Fernandes, T. H., Gilbert, H. J., and Ferreira, L. M. (1997) Possible roles for a non-modular, thermostable and proteinase-resistant cellulase from the mesophilic aerobic soil bacterium Cellvibrio mixtus. Appl. Microbiol. Biotechnol. 48, 473–479.

    Article  PubMed  CAS  Google Scholar 

  14. Klyosov, A. A. (1990). Trends in biochemistry and enzymology of cellulose degradation. Biochemistry. 29(47), 10577–10585.

    Article  PubMed  CAS  Google Scholar 

  15. Schwarz, W. H. (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56, 634–649.

    Article  PubMed  CAS  Google Scholar 

  16. Shoham, Y., R. Lamed and E. A. Bayer (1999). The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7(7), 275–281.

    Article  PubMed  CAS  Google Scholar 

  17. Sanchez-Torres, J., Perez, P., and Santamaria, R. I. (1996) A cellulase gene from a new alkalophilic Bacillus sp. (strain N186-1). Its cloning, nucleotide sequence and expression in Escherichia coli. Appl. Microbiol. Biotechnol. 46, 149–155.

    Article  PubMed  CAS  Google Scholar 

  18. Cazemier, A. E., Verdoes, J. C., Op den Camp, H. J., Hackstein, J. H., and van Ooyen, A. J. (1999) A beta-1,4-endoglucanase-encoding gene from Cellulomonas pachnodae. Appl. Microbiol. Biotechnol. 52, 232–239.

    Article  PubMed  CAS  Google Scholar 

  19. Solingen, P., Meijer, D., Kleij, W., Barnett, C., Bolle, R., Power, S., et al. (2001) Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5, 333.

    Article  PubMed  Google Scholar 

  20. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., and Goodman, R. M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–249.

    Article  PubMed  CAS  Google Scholar 

  21. Streit, W. R. and Schmitz, R. A. (2004) Metagenomics - the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492–498.

    Article  PubMed  CAS  Google Scholar 

  22. Daniel, R. (2004) The soil metagenome - a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15, 199–204.

    Article  PubMed  CAS  Google Scholar 

  23. Schmeisser, C., Steele, H., and Streit, W. R. (2007) Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol. 75, 955–962.

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt, T. M., DeLong, E. F., and Pace, N. R. (1991) Analysis of a marine picoplankton community by 16 S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378.

    PubMed  CAS  Google Scholar 

  25. Ferrer, M., Golyshina, O. V., Chernikova, T. N., Khachane, A. N., Reyes-Duarte, D., Santos, V. A., et al. (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7, 1996–2010.

    Article  PubMed  CAS  Google Scholar 

  26. Ferrer, M., Golyshina, O. V., Plou, F. J., Timmis, K. N., and Golyshin, P. N. (2005) A novel alpha-glucosidase from the acidophilic archaeon Ferroplasma acidiphilum strain Y with high transglycosylation activity and an unusual catalytic nucleophile. Biochem. J. 391, 269–276.

    Article  PubMed  CAS  Google Scholar 

  27. Beloqui, A., Pita, M., Polaina, J., Martinez-Arias, A., Golyshina, O. V., Zumarraga, M., et al. (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J. Biol. Chem. 281, 22933–22942.

    Article  PubMed  CAS  Google Scholar 

  28. Voget, S., Leggewie, C., Uesbeck, A., Raasch, C., Jaeger, K.-E., and Streit, W. R. (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol. 69, 6235–6242.

    Article  PubMed  CAS  Google Scholar 

  29. Healy, F. G., Ray, R. M., Aldrich, H. C., Wilkie, A. C., Ingram, L. O., and Shanmugam, K. T. (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl. Microbiol. Biotechnol. 43, 667–674.

    Article  PubMed  CAS  Google Scholar 

  30. Feng, Y., Duan, C. J., Pang, H., Mo, X. C., Wu, C. F., Yu, Y., et al. (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl. Microbiol. Biotechnol. 75, 319–328.

    Article  PubMed  CAS  Google Scholar 

  31. Grant, S., Sorokin, D. Y., Grant, W. D., Jones, B. E., and Heaphy, S. (2004) A phylogenetic analysis of Wadi el Natrun soda lake cellulase enrichment cultures and identification of cellulase genes from these cultures. Extremophiles 8, 421–429.

    Article  PubMed  CAS  Google Scholar 

  32. Rees, H. C., Grant, S., Jones, B., Grant, W. D., and Heaphy, S. (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7, 415–421.

    Article  PubMed  CAS  Google Scholar 

  33. Voget, S., Steele, H. L., and Streit, W. R. (2006) Characterization of a metagenome-derived halotolerant cellulase. J. Biotechnol. 126, 26–36.

    Article  PubMed  CAS  Google Scholar 

  34. Pottkämper, J., Barthen, P., Ilmberger, N., Schwaneberg, U., Schenk, A., Schulte, M., et al. (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chemistry 11, 957–965.

    Article  Google Scholar 

  35. Guo, H., Feng, Y., Mo, X., Duan, C., Tang, J., and Feng, J. (2008) [Cloning and expression of a beta-glucosidase gene umcel3G from metagenome of buffalo rumen and characterization of the translated product]. Sheng Wu Gong Cheng Xue Bao 24, 232–238.

    PubMed  CAS  Google Scholar 

  36. Pang, H., Zhang, P., Duan, C. J., Mo, X. C., Tang, J. L., and Feng, J. X. (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr. Microbiol. 58, 404–408.

    Article  PubMed  CAS  Google Scholar 

  37. Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565.

    Article  PubMed  CAS  Google Scholar 

  38. Brosius, J., Ullrich, A., Raker, M. A., Gray, A., Dull, T. J., Gutell, R. R., et al. (1981) Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid 6, 112–118.

    Article  PubMed  CAS  Google Scholar 

  39. Kane, M. D., Poulsen, L. K., and Stahl, D. A. (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16 S rRNA sequences. Appl. Environ. Microbiol. 59, 682–686.

    PubMed  CAS  Google Scholar 

  40. Wild, J., Hradecna, Z., Posfai, G., and Szybalski, W. (1996) A broad-host-range in vivo pop-out and amplification system for generating large quantities of 50- to 100-kb genomic fragments for direct DNA sequencing. Gene 179, 181–188.

    Article  PubMed  CAS  Google Scholar 

  41. Sektas, M. and Szybalski, W. (1998) Tightly controlled two-stage expression vectors employing the Flp/FRT-mediated inversion of cloned genes. Mol. Biotechnol. 9, 17–24.

    Article  PubMed  CAS  Google Scholar 

  42. Teather, R. M. and Wood, P. J. (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43, 777–780.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang R. Streit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jüergensen, J., Ilmberger, N., Streit, W.R. (2012). Screening for Cellulases with Industrial Value and Their Use in Biomass Conversion. In: Cheng, Q. (eds) Microbial Metabolic Engineering. Methods in Molecular Biology, vol 834. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-483-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-483-4_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-482-7

  • Online ISBN: 978-1-61779-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics