Skip to main content

Carbohydrate Microarrays for Enzymatic Reactions and Quantification of Binding Affinities for Glycan–Protein Interactions

  • Protocol
  • First Online:
Carbohydrate Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 808))

Abstract

Glycans are involved in a variety of physiological and pathological processes through interactions with proteins. Thus, the molecular basis of glycan–protein interactions provides valuable information on understanding biological phenomena and exploiting more effective carbohydrate-based therapeutic agents and diagnostic tools. Carbohydrate microarray technology has become a powerful tool for evaluating glycan-mediated biological events in a high-throughput manner. This technology is mostly applied for rapid analysis of glycans–protein interactions in the field of functional glycomics. In order to expand application areas of glycan microarrays, we have used carbohydrate microarrays for measurement of binding affinities between glycans and proteins and profiling of glycosyltransferase activities. The glycan microarrays used for these studies are constructed by immobilizing maleimide or hydrazide-conjugated glycans on the thiol or hydrazide-derivatized glass slides, respectively. This protocol describes the fabrication of carbohydrate microarrays and their applications to enzymatic reactions and determination of quantitative binding affinities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertozzi, C. R., and Kiessling, L. L. (2001) Chemical glycobiology. Science 291, 2357–2364.

    Article  PubMed  CAS  Google Scholar 

  2. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.

    Article  PubMed  CAS  Google Scholar 

  3. Roth, J. (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev. 102, 285–303.

    Article  PubMed  CAS  Google Scholar 

  4. Park, S., Lee, M.-R., and Shin, I. (2008) Chemical tools for functional studies of glycans. Chem. Soc. Rev. 37, 1579–1591.

    Article  PubMed  CAS  Google Scholar 

  5. Smith, A. E., and Helenius, A. (2004) How viruses enter animal cells. Science 304, 237–242.

    Article  PubMed  CAS  Google Scholar 

  6. Fuster, M. M., and Esko, J. D. (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5, 526–542.

    Article  PubMed  CAS  Google Scholar 

  7. Lasky, L. A. (1992) Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science 258, 964–969.

    Article  PubMed  CAS  Google Scholar 

  8. Scanlan, C.N., Offer, J., Zitzmann, N., and Dwek, R.A. (2007) Exploiting the defensive sugars of HIV-1 for drug and vaccine design. Nat. Insight 446, 1038–1045.

    Article  CAS  Google Scholar 

  9. Lis, H., and Sharon, N. (1972) Lectins: cell-agglutinating and sugar-specific proteins. Science 177, 949–959.

    Article  PubMed  Google Scholar 

  10. McCoy Jr, J. P., Varani, J., and Goldstein, I. J. (1983) Enzyme-linked lectin assay (ELLA): use of alkaline phosphatase-conjugated Griffonia simplicifolia B4 isolectin for the detection of alpha-D-galactopyranosyl end groups. Anal. Biochem. 130, 437–444.

    Article  PubMed  CAS  Google Scholar 

  11. Duverger, E., Frison, N., Roche, A. C., and Monsingny, M. (2003) Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biocheimie 85, 167–179.

    Article  CAS  Google Scholar 

  12. Dam, T. K., and Brewer, C. F. (2002) Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem. Rev. 102, 387–430.

    Article  PubMed  CAS  Google Scholar 

  13. Park, S., and Shin, I. (2002) Fabrication of carbohydrate chips for studying protein-­carbohydrate interactions. Angew. Chem. Int. Ed. 41, 3180–3182.

    Article  CAS  Google Scholar 

  14. Wang, D., Liu, S., Trummer, B. J., Deng, C., and Wang, A. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281.

    Article  PubMed  CAS  Google Scholar 

  15. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M., and Chai, W. (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20, 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  16. Houseman, B. T., and Mrksich, M. (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454.

    Article  PubMed  CAS  Google Scholar 

  17. Park, S., Lee, M.-R., Pyo, S. J., and Shin, I. (2004) Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J. Am. Chem. Soc. 126, 4812–4819.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, M.-R., and Shin, I. (2005) Fabrication of chemical microarrays by efficient immobilization of hydrazide-linked substances on epoxide-coated glass surfaces. Angew. Chem. Int. Ed. 44, 2881–2884.

    Article  CAS  Google Scholar 

  19. Park, S., and Shin, I. (2007) Carbohydrate microarrays for assaying galactosyltransferase activity. Org. Lett. 9, 1675–1678.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, M.-R., and Shin, I. (2005) Facile Preparation of Carbohydrate Microarrays by Site-Specific, Covalent Immobilization of Unmodified Carbohydrates on Hydrazide-Coated Glass Slides. Org. Lett. 7, 4269–4272.

    Article  PubMed  CAS  Google Scholar 

  21. Blixt, O. et al. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17033–17038.

    Article  PubMed  CAS  Google Scholar 

  22. de Paz, J. L., Noti, C., and Seeberger, P. H. (2006) Microarrays of synthetic heparin ­oligosaccharides. J. Am. Chem. Soc. 128, 2766–2767.

    Article  PubMed  Google Scholar 

  23. Disney, M. D., and Seeberger, P. H. (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 11, 1701–1707.

    Article  PubMed  CAS  Google Scholar 

  24. Park, S., Lee, M.-R., and Shin, I. (2009) Construction of carbohydrate microarrays by using one-step, direct immobilizations of diverse unmodified glycans on solid surfaces. Bioconjugate Chem. 20, 155–162.

    Article  CAS  Google Scholar 

  25. Park, S., Lee, M.-R., and Shin, I. (2007) Fabrication of carbohydrate chips and their use to probe protein-carbohydrate interactions. Nat. Protoc. 2, 2747–2758.

    Article  PubMed  CAS  Google Scholar 

  26. Shin, I., Cho, J. W., and Boo, D. W. (2004) Carbohydrate arrays for functional studies of carbohydrates. Comb. Chem. High Throughput Screening 7, 565–574.

    CAS  Google Scholar 

  27. Shin, I., Park, S., and Lee, M.-R. (2005) Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chem. Eur. J. 11, 2894–2901.

    Article  CAS  Google Scholar 

  28. Shin, I., Tae, J., and Park, S. (2007) Carbohydrate microarray technology for functional glycomics. Curr. Chem. Biol. 1, 187–199.

    Article  CAS  Google Scholar 

  29. Shin, I. (2006) Carbohydrate microarrays for high-throughput analysis of carbohydrate-protein interactions. In Protein-Carbohydrate Interactions in Infectious Diseases. (Ed. Carole A. Bewley) 221–46 (RSC Publishing, Cambridge, UK).

    Google Scholar 

  30. Park, S., Lee, M.-R., and Shin, I. (2008) Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes. Chem. Commun. 4389–4399.

    Google Scholar 

  31. Horlacher, T., and Seeberger, P. H. (2008) Carbohydrate arrays as tools for research and diagnostics. Chem. Soc. Rev. 37, 1414–1422.

    Article  PubMed  CAS  Google Scholar 

  32. Laurent, N., Voglmeir, J., and Flitsch, S. L. (2008) Glycoarrays-tools for determining protein-carbohydrate interactions and glycoenzyme specificity. Chem. Commun. 4400–4412.

    Google Scholar 

  33. Liang, P.-H., Wang, S.-K., and Wong, C.-H. (2007) Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J. Am. Chem. Soc. 128 11177–11184.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the National Creative Research Initiative and WCU programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Injae Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, MR., Park, S., Shin, I. (2012). Carbohydrate Microarrays for Enzymatic Reactions and Quantification of Binding Affinities for Glycan–Protein Interactions. In: Chevolot, Y. (eds) Carbohydrate Microarrays. Methods in Molecular Biology, vol 808. Humana Press. https://doi.org/10.1007/978-1-61779-373-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-373-8_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-372-1

  • Online ISBN: 978-1-61779-373-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics