Skip to main content

Carbohydrate Microarrays in 96-Well Polystyrene Microtiter Plates

  • Protocol
  • First Online:
Carbohydrate Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 808))

Abstract

A method for the preparation of carbohydrate microarrays inside 96-well polystyrene microtiter plates is described. The key step in this strategy represents the synthesis of carbohydrate–dextran conjugates by copper (I)-catalyzed [3 + 2] cycloaddition between alkyne carbohydrate derivative and a specially designed azido dextran polymer. The conjugates adsorb efficiently on polystyrene surface and can be printed inside 96-well plates using a non-contact piezoelectric microarrayer. Model interactions with a selection of lectins (concanavalin A, wheat germ agglutinin, Erythrina Cristagalli) display the efficiency of the immobilization method, its reproducibility and the specificity of biomolecular interactions occurring at the polystyrene–water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Love, K. R., and Seeberger, P. H. (2002) Carbohydrate arrays as tools for glycomics. Angew Chem Int Ed Engl 41, 3583–6, 3513.

    Google Scholar 

  2. Leinonen, M., and Frasch, C. E. (1982) Class-specific antibody response to group B Neisseria meningitidis capsular polysaccharide: use of polylysine precoating in an enzyme-linked immunosorbent assay. Infect Immun 38, 1203–7.

    PubMed  CAS  Google Scholar 

  3. Marson, A., Robinson, D. E., Brookes, P. N., Mulloy, B., Wiles, M., Clark, S. J., Fielder, H. L., Collinson, L. J., Cain, S. A., Kielty, C. M., McArthur, S., Buttle, D. J., Short, R. D., Whittle, J. D., and Day, A. J. (2009) Development of a microtiter plate-based glycosaminoglycan array for the investigation of glycosaminoglycan-protein interactions. Glycobiology 19, 1537–46.

    Article  PubMed  CAS  Google Scholar 

  4. Zielen, S., Broker, M., Strnad, N., Schwenen, L., Schon, P., Gottwald, G., and Hofmann, D. (1996) Simple determination of polysaccharide specific antibodies by means of chemically modified ELISA plates. J Immunol Methods 193, 1–7.

    Article  PubMed  CAS  Google Scholar 

  5. Gehring, A. G., Albin, D. M., Reed, S. A., Tu, S. I., and Brewster, J. D. (2008) An antibody microarray, in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and biomolecules. Anal Bioanal Chem 391, 497–506.

    Article  PubMed  CAS  Google Scholar 

  6. Cherniak, R., Cheeseman, M. M., Reyes, G. H., Reiss, E., and Todaro, F. (1988) Enhanced binding of capsular polysaccharides of Cryptococcus neoformans to polystyrene microtitration plates for enzyme-linked immunosorbent assay. Diagn Clin Immunol 5, 344–8.

    PubMed  CAS  Google Scholar 

  7. Gray, B. M. (1979) ELISA methodology for polysaccharide antigens: protein coupling of polysaccharides for adsorption to plastic tubes. J Immunol Methods 28, 187–92.

    Article  PubMed  CAS  Google Scholar 

  8. Fazio, F., Bryan, M. C., Blixt, O., Paulson, J. C., and Wong, C. H. (2002) Synthesis of sugar arrays in microtiter plate. J Am Chem Soc 124, 14397–402.

    Article  PubMed  CAS  Google Scholar 

  9. Satoh, A., Fukui, E., Yoshino, S., Shinoda, M., Kojima, K., and Matsumoto, I. (1999) Comparison of methods of immobilization to enzyme-linked immunosorbent assay plates for the detection of sugar chains. Anal Biochem 275, 231–5.

    Article  PubMed  CAS  Google Scholar 

  10. Dyukova, V. I., Shilova, N. V., Galanina, O. E., Rubina, A. Y., and Bovin, N. V. (2006) Design of carbohydrate multiarrays. Biochim Biophys Acta 1760, 603–9.

    Article  PubMed  CAS  Google Scholar 

  11. Graves, H. C. (1988) The effect of surface charge on non-specific binding of rabbit immunoglobulin G in solid-phase immunoassays. J Immunol Methods 111, 157–66.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, M. R., and Shin, I. (2005) Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org Lett 7, 4269–72.

    Article  PubMed  CAS  Google Scholar 

  13. Shin, I., Park, S., and Lee, M. R. (2005) Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chemistry 11, 2894–901.

    Article  PubMed  CAS  Google Scholar 

  14. Park, S., and Shin, I. (2002) Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew Chem Int Ed Engl 41, 3180–2.

    Article  PubMed  CAS  Google Scholar 

  15. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M., and Chai, W. (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 20, 1011–7.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, D., Liu, S., Trummer, B. J., Deng, C., and Wang, A. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–81.

    Article  PubMed  CAS  Google Scholar 

  17. Carion, O., Lefebvre, J., Dubreucq, G., Dahri-Correia, L., Correia, J., and Melnyk, O. (2006) Polysaccharide microarrays for polysaccharide-platelet-derived-growth-factor interaction studies. Chembiochem 7, 817–26.

    Article  PubMed  CAS  Google Scholar 

  18. Huynh, R., Chaubet, F., and Jozefonvicz, J. (2001) Anticoagulant properties of dextranmethylcarboxylate benzylamide sulfate (DMCBSu); a new generation of bioactive functionalized dextran. Carbohydr Res 332, 75–83.

    Article  PubMed  CAS  Google Scholar 

  19. Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B. (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41, 2596–9.

    Article  PubMed  CAS  Google Scholar 

  20. Tornoe, C. W., Christensen, C., and Meldal, M. (2002) Peptidotriazoles on Solid Phase: [1,2,30-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides.. J. Org. Chem. 67, 3057–3064.

    Article  PubMed  CAS  Google Scholar 

  21. Carboni, B., Benalil, A., and Vaultier, M. (1993) Aliphatic amino azides as key building blocks for efficient polyamine syntheses. J. Org. Chem. 58, 736–3741.

    Article  Google Scholar 

  22. Tamanini, E., Rigby, S. E., Motevalli, M., Todd, M. H., and Watkinson, M. (2009) Responsive metal complexes: a click-based “allosteric scorpionate” complex permits the detection of a biological recognition event by EPR/ENDOR spectroscopy. Chem. Eur. J. 15, 3720–8.

    Article  CAS  Google Scholar 

  23. Wan, Q., Chen, J., Chen, G., and Danishefsky, S. L. (2006) A potentially valuable advance in the synthesis of carbohydrate-based anticancer vaccines through extended cycloaddition chemistry. J. Org. Chem. 71, 8244–8249.

    Article  PubMed  CAS  Google Scholar 

  24. Roy, B., and Mukhopadhyay, B. (2007) Sulfuric acid immobilized on silica: an excellent catalyst for Fischer type glycosylation. Tetrahedron Lett. 48, 3783–3787.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from CNRS, Université de Lille Nord de France, Institut Pasteur de Lille, IFR 142, Région Nord Pas de Calais, the European Community (FEDER), Endotis Pharma, Inc., and from Cancéropôle Nord-Ouest. This research was performed using the Chemistry Systems Biology platform (http://csb.ibl.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Melnyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ebran, JP., Dendane, N., Melnyk, O. (2012). Carbohydrate Microarrays in 96-Well Polystyrene Microtiter Plates. In: Chevolot, Y. (eds) Carbohydrate Microarrays. Methods in Molecular Biology, vol 808. Humana Press. https://doi.org/10.1007/978-1-61779-373-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-373-8_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-372-1

  • Online ISBN: 978-1-61779-373-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics