Skip to main content

Microarray Technology Using Glycans Extracted from Natural Sources for Serum Antibody Fluorescent Detection

  • Protocol
  • First Online:
Carbohydrate Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 808))

Abstract

Glycan microarray technology enables the screening of large numbers of glycan samples for glycan–protein interactions, based on the presentation of immobilized glycans in a discrete pattern on a solid support. Here we describe a glycan microarray approach employing glycans enzymatically released from proteins and lipids of in vitro cultured cells and of human and animal tissues, followed by the detection of serum antibody binding. This approach may be used to detect autoantibodies in cancer as well as in autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  PubMed  CAS  Google Scholar 

  2. Hebert DN, Garman SC, Molinari M (2005) The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol 15:364–370

    Article  PubMed  CAS  Google Scholar 

  3. Taylor ME, Drickamer K (2007) Paradigms for glycan-binding receptors in cell adhesion. Curr Opin Cell Biol 19:572–577

    Article  PubMed  CAS  Google Scholar 

  4. Endo T (2005) Glycans and glycan-binding proteins in brain: galectin-1-induced expression of neurotrophic factors in astrocytes. Curr Drug Targets 6:427–436

    Article  PubMed  CAS  Google Scholar 

  5. Thisse B, Thisse C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287:390–402

    Article  PubMed  CAS  Google Scholar 

  6. Lau KS, Dennis JW (2008) N-Glycans in cancer progression. Glycobiology 18:750–760

    Article  PubMed  CAS  Google Scholar 

  7. Moskal JR, Kroes RA, Dawson G (2009) The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert Rev Neurother 9:1529–1545

    Article  PubMed  CAS  Google Scholar 

  8. Zhao YY, Takahashi M, Gu JG, et al (2008) Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99:1304–1310

    Article  PubMed  CAS  Google Scholar 

  9. Vasta GR (2009) Roles of galectins in infection. Nat Rev Microbiol 7:424–438

    Article  PubMed  CAS  Google Scholar 

  10. Sperandio M, Gleissner CA, Ley K (2009) Glycosylation in immune cell trafficking. Immunol Rev 230:97–113

    Article  PubMed  CAS  Google Scholar 

  11. Pedersen JW, Blixt O, Bennett EP, et al (2011) Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer 128:1860–1871

    Article  PubMed  CAS  Google Scholar 

  12. Lu H, Goodell V, Disis ML (2008) Humoral immunity directed against tumor-associated antigens as potential biomarkers for the early diagnosis of cancer. J Proteome Res 7:1388–1394

    Article  PubMed  CAS  Google Scholar 

  13. Lu H, Goodell V, Disis ML (2007) Targeting serum antibody for cancer diagnosis: a focus on colorectal cancer. Expert Opin Ther Targets 11:235–244

    Article  PubMed  CAS  Google Scholar 

  14. Blixt O, Head S, Mondala T, et al (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101:17033–17038

    Article  PubMed  CAS  Google Scholar 

  15. Gruber K, Horlacher T, Castelli R, et al (2011) Cantilever Array Sensors Detect Specific Carbohydrate-Protein Interactions with Picomolar Sensitivity. ACS Nano

    Google Scholar 

  16. Weishaupt M, Eller S, Seeberger PH (2010) Solid phase synthesis of oligosaccharides. Methods Enzymol 478:463–484

    Article  PubMed  CAS  Google Scholar 

  17. Song X, Lasanajak Y, Xia B, et al (2011) Shotgun glycomics: a microarray strategy for functional glycomics. Nat Methods 8:85–90

    Article  PubMed  CAS  Google Scholar 

  18. Liu Y, Feizi T, Campanero-Rhodes MA, et al (2007) Neoglycolipid probes prepared via oxime ligation for microarray analysis of oligosaccharide-protein interactions. Chem Biol 14:847–859

    Article  PubMed  CAS  Google Scholar 

  19. de Boer AR, Hokke CH, Deelder AM, et al (2007) General microarray technique for immobilization and screening of natural glycans. Anal Chem 79:8107–8113

    Article  PubMed  Google Scholar 

  20. de Boer AR, Hokke CH, Deelder AM, et al (2008) Serum antibody screening by surface plasmon resonance using a natural glycan microarray. Glycoconj J 25:75–84

    Article  PubMed  Google Scholar 

  21. Potter VR, Elvehjem CA (2011) A modified method for the study of tissue oxidations. J Biol Chem 114:495–504

    Google Scholar 

  22. Ruhaak LR, Steenvoorden E, Koeleman CA, et al (2010) 2-picoline-borane: a non-toxic reducing agent for oligosaccharide labeling by reductive amination. Proteomics 10:2330–2336

    Article  PubMed  CAS  Google Scholar 

  23. Harvey DJ (2005) Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J Am Soc Mass Spectrom 16:647–659

    Article  PubMed  CAS  Google Scholar 

  24. Harvey DJ (2005) Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans. J Am Soc Mass Spectrom 16:631–646

    Article  PubMed  CAS  Google Scholar 

  25. Zaia J (2004) Mass spectrometry of oligosaccharides. Mass Spectrom Rev 23:161–227

    Article  PubMed  CAS  Google Scholar 

  26. Ahn J, Bones J, Yu YQ, et al (2010) Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography ­columns packed with 1.7 microm sorbent. J Chromatogr B Analyt Technol Biomed Life Sci 878:403–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. C.H. Hokke, Dr. A.R. de Boer, U. Lambertz, Dr. A. van Diepen, and R. Curfs for their help in establishing the array platform. This project was financed by the Netherlands Genomics Initiative (Horizon Breakthrough Project 050-71-302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Wuhrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lonardi, E., Deelder, A.M., Wuhrer, M., Balog, C.I.A. (2012). Microarray Technology Using Glycans Extracted from Natural Sources for Serum Antibody Fluorescent Detection. In: Chevolot, Y. (eds) Carbohydrate Microarrays. Methods in Molecular Biology, vol 808. Humana Press. https://doi.org/10.1007/978-1-61779-373-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-373-8_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-372-1

  • Online ISBN: 978-1-61779-373-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics