Skip to main content

Recent Advances and Future Challenges in Glycan Microarray Technology

  • Protocol
  • First Online:
Carbohydrate Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 808))

Abstract

Glycan microarrays, carrying hundreds of different sugars on chip surfaces, have become a standard tool for the study of interactions of biomolecules with carbohydrates. The chip-based format offers important advantages, including the ability to screen in parallel several thousand binding events on a single slide, the minimal amount of sample required for one experiment, and the multivalent display of sugars on the chip that mimics the presentation of carbohydrates in nature. This chapter presents recent advances and future challenges in glycan microarray technology. We describe different immobilization and detection methods as well as applications in glycomics, drug discovery, and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laurent, N., Voglmeir, J., and Flitsch, S. L. (2008) Glycoarrays - tools for determining protein-carbohydrate interactions and glycoenzyme specificity. Chem. Commun., 4400–4412.

    Google Scholar 

  2. Horlacher, T., and Seeberger, P. H. (2008) Carbohydrate arrays as tools for research and diagnostics. Chem. Soc. Rev. 37, 1414–1422.

    Article  PubMed  CAS  Google Scholar 

  3. Park, S., Lee, M. R., and Shin, I. (2008) Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes. Chem. Commun., 4389–4399.

    Google Scholar 

  4. Wu, C. Y., Liang, P. H., and Wong, C. H. (2009) New development of glycan arrays. Org. Biomol. Chem. 7, 2247–2254.

    Article  PubMed  CAS  Google Scholar 

  5. de Paz, J. L., Horlacher, T., and Seeberger, P. H. (2006) Oligosaccharide microarrays to map interactions of carbohydrates in biological systems. Methods Enzymol. 415, 269–292.

    Article  PubMed  Google Scholar 

  6. de Paz, J. L., and Seeberger, P. H. (2006) Recent advances in carbohydrate microarrays. QSAR Comb. Sci. 25, 1027–1032.

    Article  Google Scholar 

  7. Shin, I., Park, S., and Lee, M. R. (2005) Carbohydrate microarrays: An advanced technology for functional studies of glycans. Chem. Eur. J. 11, 2894–2901.

    Article  CAS  Google Scholar 

  8. Adams, E. W., Ratner, D. M., Bokesch, H. R., McMahon, J. B., O’Keefe, B. R., and Seeberger, P. H. (2004) Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology: Glycan-dependent gp120/protein interactions. Chem. Biol. 11, 875–881.

    Article  PubMed  CAS  Google Scholar 

  9. Park, S., Lee, M. R., Pyo, S. J., and Shin, I. (2004) Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J. Am. Chem. Soc. 126, 4812–4819.

    Article  PubMed  CAS  Google Scholar 

  10. Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M. E., Alvarez, R., Bryan, M. C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D. J., Skehel, J. J., van Die, I., Burton, D. R., Wilson, I. A., Cummings, R., Bovin, N., Wong, C. H., and Paulson, J. C. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U.S.A. 101, 17033–17038.

    Article  PubMed  CAS  Google Scholar 

  11. Noti, C., de Paz, J. L., Polito, L., and Seeberger, P. H. (2006) Preparation and use of microarrays containing synthetic heparin oligosaccharides for the rapid analysis of heparin-protein interactions. Chem. Eur. J. 12, 8664–8686.

    Article  CAS  Google Scholar 

  12. Calarese, D. A., Lee, H. K., Huang, C. Y., Best, M. D., Astronomo, R. D., Stanfield, R. L., Katinger, H., Burton, D. R., Wong, C. H., and Wilson, I. A. (2005) Dissection of the carbohydrate specificity of the broadly neutralizing-anti-HIV-1 antibody 2 G12. Proc. Natl. Acad. Sci. U.S.A. 102, 13372–13377.

    Article  PubMed  CAS  Google Scholar 

  13. Manimala, J. C., Li, Z., Jain, A., VedBrat, S., and Gildersleeve, J. C. (2005) Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: implications for diagnostic and vaccine development. ChemBioChem 6, 2229–2241.

    Article  Google Scholar 

  14. Seeberger, P. H., and Werz, D. B. (2007) Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu, X. M., and Schmidt, R. R. (2009) New Principles for Glycoside-Bond Formation. Angew. Chem. Int. Ed. 48, 1900–1934.

    Article  CAS  Google Scholar 

  16. Boltje, T. J., Buskas, T., and Boons, G. J. (2009) Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nature Chem. 1, 611–622.

    Article  CAS  Google Scholar 

  17. Zhang, Z. Y., Ollmann, I. R., Ye, X. S., Wischnat, R., Baasov, T., and Wong, C. H. (1999) Programmable one-pot oligosaccharide synthesis. J. Am. Chem. Soc. 121, 734–753.

    Article  CAS  Google Scholar 

  18. Plante, O. J., Palmacci, E. R., and Seeberger, P. H. (2001) Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527.

    Article  PubMed  CAS  Google Scholar 

  19. Seeberger, P. H. (2008) Automated oligosaccharide synthesis. Chem. Soc. Rev. 37, 19–28.

    Article  PubMed  CAS  Google Scholar 

  20. Seeberger, P. H., and Werz, D. B. (2005) Automated synthesis of oligosaccharides as a basis for drug discovery. Nat. Rev. Drug Discov. 4, 751–763.

    Article  PubMed  CAS  Google Scholar 

  21. Werz, D. B., and Seeberger, P. H. (2005) Carbohydrates as the next frontier in pharmaceutical research. Chem. Eur. J. 11, 3194–3206.

    Article  CAS  Google Scholar 

  22. Xia, B. Y., Kawar, Z. S., Ju, T. Z., Alvarez, R. A., Sachdev, G. P., and Cummings, R. D. (2005) Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods 2, 845–850.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, Y., Feizi, T., Carnpanero-Rhodes, M. A., Childs, R. A., Zhang, Y. N., Muiioy, B., Evans, P. G., Osborn, H. M. I., Otto, D., Crocker, P. R., and Chai, W. C. (2007) Neoglycolipid probes prepared via oxime ligation for microarray analysis of oligosaccharide-protein interactions. Chem. Biol. 14, 847–859.

    Article  PubMed  CAS  Google Scholar 

  24. Brun, M. A., Disney, M. D., and Seeberger, P. H. (2006) Miniaturization of microwave-assisted carbohydrate functionalization to create oligosaccharide microarrays. ChemBioChem 7, 421–424.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, M., and Shin, I. (2005) Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org. Lett. 7, 4269–4272.

    Article  PubMed  CAS  Google Scholar 

  26. Zhi, Z. L., Powell, A. K., and Turnbull, J. E. (2006) Fabrication of carbohydrate microarrays on gold surfaces: Direct attachment of nonderivatized oligosaccharides to hydrazide-modified self-assembled monolayers. Anal. Chem. 78, 4786–4793.

    Article  PubMed  CAS  Google Scholar 

  27. Wang, D. N., Liu, S. Y., Trummer, B. J., Deng, C., and Wang, A. L. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20, 275–281.

    Article  PubMed  CAS  Google Scholar 

  28. Shipp, E. L., and Hsieh-Wilson, L. C. (2007) Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem. Biol. 14, 195–208.

    Article  PubMed  CAS  Google Scholar 

  29. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M., and Chai, W. G. (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20, 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  30. Ko, K. S., Jaipuri, F. A., and Pohl, N. L. (2005) Fluorous-based carbohydrate microarrays. J. Am. Chem. Soc. 127, 13162–13163.

    Article  PubMed  CAS  Google Scholar 

  31. Alvarez, R. A., and Blixt, O. (2006) Identi-fication of ligand specificities for glycan-binding proteins using glycan arrays. Methods Enzymol. 415, 292–310.

    Article  PubMed  CAS  Google Scholar 

  32. Chevolot, Y., Bouillon, C., Vidal, S., Morvan, F., Meyer, A., Cloarec, J. P., Jochum, A., Praly, J. P., Vasseur, J. J., and Souteyrand, E. (2007) DNA-based carbohydrate biochips: a platform for surface glyco-engineering. Angew. Chem. Int. Ed. 46, 2398–2402.

    Article  CAS  Google Scholar 

  33. Bryan, M. C., Fazio, F., Lee, H. K., Huang, C. Y., Chang, A., Best, M. D., Calarese, D. A., Blixt, C., Paulson, J. C., Burton, D., Wilson, I. A., and Wong, C. H. (2004) Covalent display of oligosaccharide arrays in microtiter plates. J. Am. Chem. Soc. 126, 8640–8641.

    Article  PubMed  CAS  Google Scholar 

  34. Lee, J. C., Wit, C. Y., Apon, J. V., Siuzdak, G., and Wong, C. H. (2006) Reactivity-based one-pot synthesis of the tumor-associated antigen N3 minor octasaccharide for the development of a photocleavable DIOS-MS sugar array. Angew. Chem. Int. Ed. 45, 2753–2757.

    Article  CAS  Google Scholar 

  35. Song, E.-H., and Pohl, N. L. B. (2009) Carbohydrate arrays: recent developments in fabrication and detection methods with applications. Curr. Opin. Chem. Biol. 13, 626–632.

    Article  PubMed  CAS  Google Scholar 

  36. Ratner, D. M., Adams, E. W., Su, J., O’Keefe, B. R., Mrksich, M., and Seeberger, P. H. (2004) Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. ChemBioChem 5, 379–382.

    Article  PubMed  CAS  Google Scholar 

  37. Smith, E. A., Thomas, W. D., Kiessling, L. L., and Corn, R. M. (2003) Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J. Am. Chem. Soc. 125, 6140–6148.

    Article  PubMed  CAS  Google Scholar 

  38. Karamanska, R., Clarke, J., Blixt, O., MacRae, J. I., Zhang, J. Q. Q., Crocker, P. R., Laurent, N., Wright, A., Flitsch, S. L., Russell, D. A., and Field, R. A. (2008) Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj. J. 25, 69–74.

    Article  PubMed  CAS  Google Scholar 

  39. de Boer, A. R., Hokke, C. H., Deelder, A. M., and Wuhrer, M. (2008) Serum antibody screening by surface plasmon resonance using a natural glycan microarray. Glycoconj. J. 25, 75–84.

    Article  PubMed  Google Scholar 

  40. Su, J., and Mrksich, M. (2002) Using mass spectrometry to characterize self-assembled monolayers presenting peptides, proteins, and carbohydrates. Angew. Chem. Int. Ed. 41, 4715–4718.

    Article  CAS  Google Scholar 

  41. Laurent, N., Voglmeir, J., Wright, A., Blackburn, J., Pham, N. T., Wong, S. C. C., Gaskell, S. J., and Flitsch, S. L. (2008) Enzymatic glycosylation of peptide arrays on gold surfaces. ChemBioChem 9, 883–887.

    Article  PubMed  CAS  Google Scholar 

  42. Zhi, Z. L., Laurent, N., Powel, A. K., Karamanska, R., Fais, M., Voglmeir, J., Wright, A., Blackburn, J. M., Crocker, P. R., Russell, D. A., Flitsch, S., Field, R. A., and Turnbull, J. E. (2008) A versatile gold surface approach for fabrication and interrogation of glycoarrays. ChemBioChem 9, 1568–1575.

    Article  PubMed  CAS  Google Scholar 

  43. Ban, L., and Mrksich, M. (2008) On-chip synthesis and label-free assays of oligosaccharide arrays. Angew. Chem. Int. Ed. 47, 3396–3399.

    Article  CAS  Google Scholar 

  44. Disney, M. D., and Seeberger, P. H. (2004) Aminoglycoside microarrays to explore interactions of antibiotics with RNAs and proteins. Chem. Eur. J. 10, 3308–3314.

    Article  CAS  Google Scholar 

  45. Nimrichter, L., Gargir, A., Gortler, M., Altstock, R. T., Shtevi, A., Weisshaus, O., Fire, E., Dotan, N., and Schnaar, R. L. (2004) Intact cell adhesion to glycan microarrays. Glycobiology 14, 197–203.

    Article  PubMed  CAS  Google Scholar 

  46. Disney, M. D., and Seeberger, P. H. (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 11, 1701–1707.

    Article  PubMed  CAS  Google Scholar 

  47. Liang, P. H., Wang, S. K., and Wong, C. H. (2007) Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: Determination of surface and solution dissociation constants. J. Am. Chem. Soc. 129, 11177–11184.

    Article  PubMed  CAS  Google Scholar 

  48. Park, S., and Shin, I. (2007) Carbohydrate microarrays for assaying galactosyltransferase activity. Org. Lett. 9, 1675–1678.

    Article  PubMed  CAS  Google Scholar 

  49. de Paz, J. L., Noti, C., Bohm, F., Werner, S., and Seeberger, P. H. (2007) Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem. Biol. 14, 879–887.

    Article  PubMed  Google Scholar 

  50. Houseman, B. T., and Mrksich, M. (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454.

    Article  PubMed  CAS  Google Scholar 

  51. de Paz, J. L., Noti, C., and Seeberger, P. H. (2006) Microarrays of synthetic heparin oligosaccharides. J. Am. Chem. Soc. 128, 2766–2767.

    Article  PubMed  Google Scholar 

  52. de Paz, L. L., Moseman, E. A., Noti, C., Polito, L., von Andrian, U. H., and Seeberger, P. H. (2007) Profiting heparin-chemokine interactions using synthetic tools. ACS Chem. Biol. 2, 735–744.

    Article  PubMed  Google Scholar 

  53. de Paz, J. L., and Seeberger, P. H. (2008) Deciphering the glycosaminoglycan code with the help of microarrays. Mol. BioSyst. 4, 707–711.

    Article  PubMed  Google Scholar 

  54. Dube, D. H., and Bertozzi, C. R. (2005) Glycans in cancer and inflammation. Potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488.

    CAS  Google Scholar 

  55. Huang, C. Y., Thayer, D. A., Chang, A. Y., Best, M. D., Hoffmann, J., Head, S., and Wong, C. H. (2006) Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc. Natl. Acad. Sci. U.S.A. 103, 15–20.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, C. C., Huang, Y. L., Ren, C. T., Lin, C. W., Hung, J. T., Yu, J. C., Yu, A. L., Wu, C. Y., and Wong, C. H. (2008) Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc. Natl. Acad. Sci. U.S.A. 105, 11661–11666.

    Article  PubMed  CAS  Google Scholar 

  57. Blixt, O., Hoffmann, J., Svenson, S., and Norberg, T. (2008) Pathogen specific carbohydrate antigen microarrays: a chip for detection of Salmonella O-antigen specific antibodies. Glycoconj. J. 25, 27–36.

    Article  PubMed  CAS  Google Scholar 

  58. Kamena, F., Tamborrini, M., Liu, X. Y., Kwon, Y. U., Thompson, F., Pluschke, G., and Seeberger, P. H. (2008) Synthetic GPI array to study antitoxic malaria response. Nat. Chem. Biol. 4, 238–240.

    Article  PubMed  CAS  Google Scholar 

  59. Stevens, J., Blixt, O., Glaser, L., Taubenberger, J. K., Palese, P., Paulson, J. C., and Wilson, I. A. (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155.

    Article  PubMed  CAS  Google Scholar 

  60. Stevens, J., Blixt, O., Tumpey, T. M., Taubenberger, J. K., Paulson, J. C., and Wilson, I. A. (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404–410.

    Article  PubMed  CAS  Google Scholar 

  61. Childs, R. A., Palma, A. S., Wharton, S., Matrosovich, T., Liu, Y., Chai, W. G., Campanero-Rhodes, M. A., Zhang, Y. B., Eickmann, M., Kiso, M., Hay, A., Matrosovich, M., and Feizi, T. (2009) Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat. Biotechnol. 27, 797–799.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Spanish Research Council (CSIC) (Grant 200880I041), the Spanish Ministry of Science and Innovation (Grant CTQ2009-07168), Junta de Andalucía (Grant P07-FQM-02969, “Incentivo a Proyecto Internacional”), and the European Union (FEDER support and Marie Curie Reintegration Grant) for financial support. Generous financial support from the Max-Planck Society is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. de Paz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Paz, J.L., Seeberger, P.H. (2012). Recent Advances and Future Challenges in Glycan Microarray Technology. In: Chevolot, Y. (eds) Carbohydrate Microarrays. Methods in Molecular Biology, vol 808. Humana Press. https://doi.org/10.1007/978-1-61779-373-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-373-8_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-372-1

  • Online ISBN: 978-1-61779-373-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics