Skip to main content

Human Osteoclast Culture and Phenotypic Characterization

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 806))

Abstract

Bone remodelling occurs throughout life via the coupled actions of bone resorption and bone formation. When the balance of bone resorption and formation becomes unequal, bone diseases, such as osteoporosis occur, while the absence of functional osteoclasts leads to diseases such as osteopetrosis and pycnodysostosis. In order to develop effective treatments for bone disease the normal regulatory systems involved in bone resorption need to be fully elucidated. The only cell in the body capable of resorbing bone is the osteoclast – a highly specialized cell of haematopoietic origin. Until relatively recently, the ability to study the formation and function of human osteoclasts in vitro has been limited.

In this chapter, we provide an up-to-date detailed guide to isolating and culturing primary osteoclasts from human peripheral blood. In addition, we detail the methodology used to characterize osteoclasts and how to quantify resorption in vitro. In combination these methods provide a powerful tool in the study of human osteoclasts and the development of new novel treatments for bone disease.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walsh CA, Carron JA, Gallagher JA. The Isolation of Osteoclasts from Human Giant Cell Tumors and Long-Term Marrow Cultures. 1996: 263–76.

    Google Scholar 

  2. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998; 95: 3597–602.

    Article  PubMed  CAS  Google Scholar 

  3. Quinn JM, Fujikawa Y, McGee JO, Athanasou NA. Rodent osteoblast-like cells support osteoclastic differentiation of human cord blood monocytes in the presence of M-CSF and 1,25 dihydroxyvitamin D3. Int J Biochem Cell Biol. 1997; 29: 173–9.

    Article  PubMed  CAS  Google Scholar 

  4. Agrawal A, Buckley KA, Bowers K, Furber M, Gallagher JA, Gartland A. The Effects of P2X7 Receptor Antagonists on the Formation and Function of Human Osteoclasts in vitro. Purinergic Signalling. 2010;6: 307–15.

    Article  PubMed  CAS  Google Scholar 

  5. Buckley KA, Hipskind RA, Gartland A, Bowler WB, Gallagher JA. Adenosine triphosphate stimulates human osteoclast activity via upregulation of osteoblast-expressed receptor activator of nuclear factor-kappa B ligand. Bone. 2002; 31: 582–90.

    Article  PubMed  CAS  Google Scholar 

  6. Chan BY, Gartland A, Wilson PJ, et al. PPAR agonists modulate human osteoclast formation and activity in vitro. Bone. 2007; 40: 149–59.

    Article  PubMed  CAS  Google Scholar 

  7. Gartland A, Buckley KA, Bowler WB, Gallagher JA. Blockade of the pore-forming P2X7 receptor inhibits formation of multinucleated human osteoclasts in vitro. Calcif Tissue Int. 2003; 73: 361–9.

    Article  PubMed  CAS  Google Scholar 

  8. Neale SD, Smith R, Wass JA, Athanasou NA. Osteoclast differentiation from circulating mononuclear precursors in Paget’s disease is hypersensitive to 1,25-dihydroxyvitamin D(3) and RANKL. Bone. 2000; 27: 409–16.

    Article  PubMed  CAS  Google Scholar 

  9. Massey HM, Flanagan AM. Human osteoclasts derive from CD14-positive monocytes. Br J Haematol. 1999; 106: 167–70.

    Article  PubMed  CAS  Google Scholar 

  10. Nicholson GC, Malakellis M, Collier FM, et al. Induction of osteoclasts from CD14-positive human peripheral blood mononuclear cells by receptor activator of nuclear factor kappaB ligand (RANKL). Clin Sci (Lond). 2000; 99: 133–40.

    Article  CAS  Google Scholar 

  11. Sorensen MG, Henriksen K, Schaller S, et al. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab. 2007; 25: 36–45.

    Article  PubMed  CAS  Google Scholar 

  12. Kamiya T, Kobayashi Y, Kanaoka K, et al. Fluorescence microscopic demonstration of cathepsin K activity as the major lysosomal cysteine proteinase in osteoclasts. J Biochem. 1998; 123: 752–9.

    PubMed  CAS  Google Scholar 

  13. Samura A, Wada S, Suda S, Iitaka M, Katayama S. Calcitonin receptor regulation and responsiveness to calcitonin in human osteoclast-like cells prepared in vitro using receptor activator of nuclear factor-kappaB ligand and macrophage colony-stimulating factor. Endocrinology. 2000; 141: 3774–82.

    Article  PubMed  CAS  Google Scholar 

  14. Minkin C. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int. 1982; 34: 285–90.

    Article  PubMed  CAS  Google Scholar 

  15. Scheven BA, Kawilarang-De Haas EW, Wassenaar AM, Nijweide PJ. Differentiation kinetics of osteoclasts in the periosteum of embryonic bones in vivo and in vitro. Anat Rec. 1986; 214: 418–23.

    Article  PubMed  CAS  Google Scholar 

  16. Hall GE, Kenny AD. Role of carbonic anhydrase in bone resorption induced by 1,25 dihydroxyvitamin D3 in vitro. Calcif Tissue Int. 1985; 37: 134–42.

    Article  PubMed  CAS  Google Scholar 

  17. Ross FP, Teitelbaum SL. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev. 2005; 208: 88–105.

    Article  PubMed  CAS  Google Scholar 

  18. Walsh CA, Beresford JN, Birch MA, Boothroyd B, Gallagher JA. Application of reflected light microscopy to identify and quantitate resorption by isolated osteoclasts. J Bone Miner Res. 1991; 6: 661–71.

    Article  PubMed  CAS  Google Scholar 

  19. Buckley KA, Chan BY, Fraser WD, Gallagher JA. Human osteoclast culture from peripheral blood monocytes: phenotypic characterization and quantitation of resorption. Methods Mol Med. 2005; 107: 55–68.

    PubMed  CAS  Google Scholar 

  20. Okabe R, Nakatsuka K, Inaba M, et al. Clinical evaluation of the Elecsys beta-CrossLaps serum assay, a new assay for degradation products of type I collagen C-tlopeptides. Clin Chem. 2001;47: 1410–4.

    PubMed  CAS  Google Scholar 

  21. de la Piedra C, Calero JA, Traba ML, Asensio MD, Argente J, Munoz MT. Urinary alpha and beta C-telopeptides of collagen I: clinical implications in bone remodeling in patients with anorexia nervosa. Osteoporos Int. 1999; 10: 480–6.

    Article  PubMed  Google Scholar 

  22. Armour KJ, van ‘t Hof RJ, Armour KE, Torbergsen AC, Del Soldato P, Ralston SH. Inhibition of bone resorption in vitro and prevention of ovariectomy-induced bone loss in vivo by flurbiprofen nitroxybutylester (HCT1026). Arthritis Rheum. 2001; 44: 2185–92.

    Article  PubMed  CAS  Google Scholar 

  23. Boyde A, Jones SJ. Pitfalls in pit measurement. Calcif Tissue Int. 1991; 49: 65–70.

    Article  PubMed  CAS  Google Scholar 

  24. Sterio DC. The unbiased estimation of number and sizes of arbitrary particles using the dissector. Journal of Microscopy. 1983; 134: 127–36.

    Article  Google Scholar 

  25. Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun. 1999; 257: 719–23.

    Article  PubMed  CAS  Google Scholar 

  26. Tsuda E, Goto M, Mochizuki S, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun. 1997; 234: 137–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Commission under the 7th Framework Programme (proposal #202231) performed as a collaborative project among the members of the ATPBone Consortium (Copenhagen University, University College London, University of Maastricht, University of Ferrara, University of Liverpool, University of Sheffield and Université Libre de Bruxelles): it is a sub-study under the main study “Fighting osteoporosis by blocking nucleotides: purinergic signalling in bone formation and homeostasis”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Gartland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Agrawal, A., Gallagher, J.A., Gartland, A. (2012). Human Osteoclast Culture and Phenotypic Characterization. In: Mitry, R., Hughes, R. (eds) Human Cell Culture Protocols. Methods in Molecular Biology, vol 806. Humana Press. https://doi.org/10.1007/978-1-61779-367-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-367-7_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-366-0

  • Online ISBN: 978-1-61779-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics