Skip to main content

In Vitro Methods for CFTR Biogenesis

  • Protocol
  • First Online:
Cystic Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

Cell-free expression systems provide unique tools for understanding CFTR biogenesis because they reconstitute the cellular folding environment and are readily amenable to biochemical and pharmacological manipulation. The most common system for this purpose is rabbit reticulocyte lysate (RRL), supplemented with either canine pancreatic microsomes or semi-permeabilized cells, which has yielded important insights into the folding of CFTR and its individual domains. A common problem in such studies, however, is that biogenesis of large proteins such as CFTR is often inefficient due to low translation processivity, ribosome stalling, and/or premature termination. The first part of this chapter therefore describes parameters that affect in vitro translation of CFTR in RRL. We have found that CFTR expression is uniquely dependent upon 5- and 3-untranslated regions (UTRs) of the mRNA. Full-length CFTR expression can be markedly increased using mRNA lacking a 5-cap analog (G(5)ppp(5)G), whereas the reverse usually holds for smaller proteins and individual CFTR domains. In the context of the full-length mRNA, translation was further stimulated by the presence of a long 3-UTR. The second part of this chapter describes CFTR translation in lysates derived from cultured mammalian cells including human bronchial epithelial cells. Unfortunately, mammalian cell-derived lysates showed limited ability to sustain full-length CFTR synthesis. However, they provide a unique opportunity to examine specific CFTR domains (i.e., nucleotide-binding domain 1 and transmembrane domain 1) under conditions that more closely resemble the native folding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skach, W. R. (2009) Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 16, 606–612.

    Article  PubMed  CAS  Google Scholar 

  2. Oberdorf, J., and Skach, W. R. (2002) In vitro reconstitution of CFTR biogenesis and degradation. Methods Mol. Med. 70, 295–310.

    PubMed  CAS  Google Scholar 

  3. Carlson, E., Bays, N., David, L., and Skach, W. R. (2005) Reticulocyte lysate as a model system to study endoplasmic reticulum membrane protein degradation. Methods Mol. Biol. 301, 185–205.

    PubMed  CAS  Google Scholar 

  4. Kaufman, R. J. (2004) Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem. Sci. 29, 152–158.

    Article  PubMed  CAS  Google Scholar 

  5. Adamson, S. D., Herbert, E., and Godchaux, W. (1968) Factors affecting the rate of protein synthesis in lysate systems from reticulocytes. Arch. Biochem. Biophys. 125, 671–683.

    Article  PubMed  CAS  Google Scholar 

  6. Zucker, W. V., and Schulman, H. M. (1968) Stimulation of globin-chain initiation by hemin in the reticulocyte cell-free system. Proc. Natl. Acad. Sci. USA 59, 582–589.

    Article  PubMed  CAS  Google Scholar 

  7. Farrell, P. J., Balkow, K., Hunt, T., Jackson, R. J., and Trachsel, H. (1977) Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell 11, 187–200.

    Article  PubMed  CAS  Google Scholar 

  8. Frydman, J., Nimmesgern, E., Ohtsuka, K., and Hartl, F. U. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117.

    Article  PubMed  CAS  Google Scholar 

  9. Dalman, F. C., Bresnick, E. H., Patel, P. D., Perdew, G. H., Watson, S. J., Jr., and Pratt, W. B. (1989) Direct evidence that the glucocorticoid receptor binds to hsp90 at or near the termination of receptor translation in vitro. J. Biol. Chem. 264, 19815–19821.

    PubMed  CAS  Google Scholar 

  10. Xiong, X., Chong, E., and Skach, W. R. (1999) Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J. Biol. Chem. 274, 2616–2624.

    Article  PubMed  CAS  Google Scholar 

  11. Carroll, R., and Lucas-Lenard, J. (1993) Preparation of a cell-free translation system with minimal loss of initiation factor eIF-2/eIF-2B activity. Anal. Biochem. 212, 17–23.

    Article  PubMed  CAS  Google Scholar 

  12. Zeenko, V. V., Wang, C., Majumder, M., Komar, A. A., Snider, M. D., Merrick, W. C., et al. (2008) An efficient in vitro translation system from mammalian cells lacking the translational inhibition caused by eIF2 phosphorylation. RNA 14, 593–602.

    Article  PubMed  CAS  Google Scholar 

  13. Hartl, F. U., and Hayer-Hartl, M. (2009) Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581.

    Article  PubMed  CAS  Google Scholar 

  14. Balch, W. E., Morimoto, R. I., Dillin, A., and Kelly, J. W. (2008) Adapting proteostasis for disease intervention. Science 319, 916–919.

    Article  PubMed  CAS  Google Scholar 

  15. Hutt, D. M., Powers, E. T., and Balch, W. E. (2009) The proteostasis boundary in misfolding diseases of membrane traffic. FEBS Lett. 583, 2639–2646.

    Article  PubMed  CAS  Google Scholar 

  16. Jackson, R. J., and Hunt, T. (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 96, 50–74.

    Article  PubMed  CAS  Google Scholar 

  17. Walter, P., and Blobel, G. (1983) Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 96, 84–93.

    Article  PubMed  CAS  Google Scholar 

  18. Michel, Y. M., Poncet, D., Piron, M., Kean, K. M., and Borman, A. M. (2000) Cap-poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation. J. Biol. Chem. 275, 32268–32276.

    Article  PubMed  CAS  Google Scholar 

  19. Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035–7056.

    Article  PubMed  CAS  Google Scholar 

  20. Jagus, R. (1987) Translation in cell-free systems. Methods Enzymol. 152, 267–276.

    Article  PubMed  CAS  Google Scholar 

  21. Xiong, X., Bragin, A., Widdicombe, J. H., Cohn, J., and Skach, W. R. (1997) Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin. Invest. 100, 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  22. Lu, Y., Xiong, X., Helm, A., Kimani, K., Bragin, A., and Skach, W. R. (1998) Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J. Biol. Chem. 273, 568–576.

    Article  PubMed  CAS  Google Scholar 

  23. Carveth, K., Buck, T., Anthony, V., and Skach, W. R. (2002) Cooperativity and flexibility of cystic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue. J. Biol. Chem. 277, 39507–39514.

    Article  PubMed  CAS  Google Scholar 

  24. Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., et al. (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176.

    Article  PubMed  CAS  Google Scholar 

  25. Gruenert, D. C., Willems, M., Cassiman, J. J., and Frizzell, R. A. (2004) Established cell lines used in cystic fibrosis research. J. Cyst. Fibros. 3, 191–196.

    Article  PubMed  CAS  Google Scholar 

  26. Jackson, R. J., Campbell, E. A., Herbert, P., and Hunt, T. (1983) The preparation and properties of gel-filtered rabbit-reticulocyte lysate protein-synthesis systems. Eur. J. Biochem. 131, 289–301.

    Article  PubMed  CAS  Google Scholar 

  27. Kaderbhai, M. A., Harding, V. J., Karim, A., Austen, B. M., and Kaderbhai, N. N. (1995) Sheep pancreatic microsomes as an alternative to the dog source for studying protein translocation. Biochem. J. 306, 57–61.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Vladimir V. Zeenko for advice in developing mammalian cell lysates and Zhongying Yang for construction and preparation of plasmids. This work was supported by National Institutes of Health grant DK51818 and the Cystic Fibrosis Foundation Therapeutics (W.R.S.) and the Manpei Suzuki Diabetes Foundation (Y.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Skach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matsumura, Y., Rooney, L., Skach, W.R. (2011). In Vitro Methods for CFTR Biogenesis. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics